Thrust库中的Gather和Scatter操作

news2025/5/19 4:58:18

Thrust库中的Gather和Scatter操作

Thrust是CUDA提供的一个类似于C++ STL的并行算法库,其中包含两个重要的数据操作:gather(聚集)和scatter(散开)。

Gather操作

Gather操作从一个源数组中按照指定的索引收集元素到目标数组中。

函数原型:

template<typename InputIterator1, typename InputIterator2, typename OutputIterator>
OutputIterator gather(InputIterator1 map_first, 
                     InputIterator1 map_last,
                     InputIterator2 input_first, 
                     OutputIterator result);

工作方式:

result[i] = input[map[i]] 对于 map中的每个索引i

示例:

#include <thrust/gather.h>
#include <thrust/device_vector.h>

// 源数据
thrust::device_vector<int> input(4);
input[0] = 10; input[1] = 20; input[2] = 30; input[3] = 40;

// 索引映射
thrust::device_vector<int> map(3);
map[0] = 3; map[1] = 1; map[2] = 2;

// 目标向量
thrust::device_vector<int> result(3);

// 执行gather操作
thrust::gather(map.begin(), map.end(), input.begin(), result.begin());
// result现在包含 [40, 20, 30]

Scatter操作

Scatter操作将源数组的元素按照指定的索引分散到目标数组中。

函数原型:

template<typename InputIterator1, typename InputIterator2, typename InputIterator3, typename OutputIterator>
OutputIterator scatter(InputIterator1 first, 
                      InputIterator1 last,
                      InputIterator2 map_first, 
                      InputIterator3 stencil,
                      OutputIterator result);

工作方式:

result[map[i]] = input[i] 对于 map中的每个索引i

示例:

#include <thrust/scatter.h>
#include <thrust/device_vector.h>

// 源数据
thrust::device_vector<int> input(3);
input[0] = 10; input[1] = 20; input[2] = 30;

// 索引映射
thrust::device_vector<int> map(3);
map[0] = 3; map[1] = 1; map[2] = 2;

// 目标向量(需要足够大)
thrust::device_vector<int> result(4);

// 执行scatter操作
thrust::scatter(input.begin(), input.end(), map.begin(), result.begin());
// result现在包含 [0, 20, 30, 10] (初始值为0)

应用场景

  1. 数据重排:当需要按照特定顺序重新排列数据时
  2. 稀疏矩阵操作:在稀疏矩阵计算中高效地访问非零元素
  3. 数据库操作:实现类似SQL中的选择和投影操作
  4. 图像处理:像素重映射操作

变体函数

Thrust还提供了一些变体函数:

  • gather_if:带条件的gather操作
  • scatter_if:带条件的scatter操作
  • stable_scatter:保持相对顺序的scatter操作

这些操作在GPU上高度优化,能够充分利用并行计算能力,比在CPU上实现的类似操作要快得多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2379020.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机发展的历程

计算机系统的概述 一, 计算机系统的定义 计算机系统的概念 计算机系统 硬件 软件 硬件的概念 计算机的实体, 如主机, 外设等 计算机系统的物理基础 决定了计算机系统的天花板瓶颈 软件的概念 由具有各类特殊功能的程序组成 决定了把硬件的性能发挥到什么程度 软件的分类…

深度学习驱动下的目标检测技术:原理、算法与应用创新(三)

五、基于深度学习的目标检测代码实现 5.1 开发环境搭建 开发基于深度学习的目标检测项目&#xff0c;首先需要搭建合适的开发环境&#xff0c;确保所需的工具和库能够正常运行。以下将详细介绍 Python、PyTorch 等关键开发工具和库的安装与配置过程。 Python 是一种广泛应用于…

jenkins流水线常规配置教程!

Jenkins流水线是在工作中实现CI/CD常用的工具。以下是一些我在工作和学习中总结出来常用的一些流水线配置&#xff1a;变量需要加双引号括起来 "${main}" 一 引用无账号的凭据 使用变量方式引用&#xff0c;这种方式只适合只由密码&#xff0c;没有用户名的凭证。例…

基于OpenCV的SIFT特征和FLANN匹配器的指纹认证

文章目录 引言一、概述二、代码解析1. 图像显示函数2. 核心认证函数2.1 创建SIFT特征提取器2.2 检测关键点和计算描述符&#xff08;源图像&#xff09;2.3 检测关键点和计算描述符&#xff08;模板图像&#xff09;2.4 创建FLANN匹配器2.5 使用K近邻匹配 3. 匹配点筛选4. 认证…

leetcode:58. 最后一个单词的长度(python3解法)

难度&#xff1a;简单 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。 示例 1&#xff1a; 输入&#xff1a;s "Hello World"…

虹科应用 | 探索PCAN卡与医疗机器人的革命性结合

随着医疗技术的不断进步&#xff0c;医疗机器人在提高手术精度、减少感染风险以及提升患者护理质量方面发挥着越来越重要的作用。医疗机器人的精确操作依赖于稳定且高效的数据通信系统&#xff0c;虹科提供的PCAN四通道mini PCIe转CAN FD卡&#xff0c;正是为了满足这一需求而设…

entity线段材质设置

在cesium中,我们可以改变其entity线段材质,这里以直线为例. 首先我们先创建一条直线 const redLine viewer.entities.add({polyline: {positions: Cesium.Cartesian3.fromDegreesArray([-75,35,-125,35,]),width: 5,material:material, 保存后可看到在地图上创建了一条线段…

[STM32] 5-1 时钟树(上)

文章目录 前言5-1 时钟树&#xff08;上&#xff09;时钟树的基本介绍时钟树的基本结构大树和小树频率运算简介计数器和分频STM32内部结构树的结构于关键节点SYSCLK(System Clock) 系统时钟 72M maxHCLK(AHB Clock) AHB时钟 36M maxPLCK(APB1 Clock) APB1时钟 36M maxPLCK2(APB…

【Linux网络与网络编程】12.NAT技术内网穿透代理服务

1. NAT技术 之前我们说到过 IPv4 协议中IP 地址数量不充足的问题可以使用 NAT 技术来解决。还提到过本地主机向公网中的一个服务器发起了一个网络请求&#xff0c;服务器是怎么将应答返回到该本地主机呢&#xff1f;&#xff08;如何进行内网转发&#xff1f;&#xff09; 这就…

从辅助到协作:GitHub Copilot的进化之路

如果说现代程序员的标配工具除了VS Code、Stack Overflow之外&#xff0c;还有谁能入选&#xff0c;那一定是GitHub Copilot。从2021年首次亮相&#xff0c;到如今深度集成进开发者日常流程&#xff0c;这个“AI编程助手”已经不只是写几行自动补全代码的小帮手了&#xff0c;而…

Linux运行时的参数、命令、网络、磁盘参数和日志监控

一、监控 1. free 功能&#xff1a;用于查看系统内存使用情况&#xff0c;包括物理内存总量、已用内存、空闲内存、缓冲区&#xff08;buffer&#xff09;和缓存&#xff08;cache&#xff09;占用&#xff0c;以及交换内存&#xff08;swap&#xff09;的使用与剩余情况。常…

鸿蒙页面布局入门

本文以仿猫眼电影M站首页布局为案例&#xff0c;展示ArkUI在实际开发中的应用。内容包括案例效果及相关知识点&#xff0c;深入解析布局框架以及头部、脚部、内容区域的构建思路与代码实现&#xff0c;最后提供完整代码和教程资源&#xff0c;助力你强化实践能力。 1. 案例效果…

阿里巴巴开源移动端多模态LLM工具——MNN

MNN 是一个高效且轻量级的深度学习框架。它支持深度学习模型的推理和训练&#xff0c;并在设备端的推理和训练方面具有行业领先的性能。目前&#xff0c;MNN 已集成到阿里巴巴集团的 30 多个应用中&#xff0c;如淘宝、天猫、优酷、钉钉、闲鱼等&#xff0c;覆盖了直播、短视频…

【漫话机器学习系列】256.用 k-NN 填补缺失值

用 k-NN 填补缺失值&#xff1a;原理、实现与应用 在实际的数据科学项目中&#xff0c;我们经常会遇到数据缺失&#xff08;Missing Values&#xff09;的问题。缺失值如果处理不当&#xff0c;不仅会影响模型训练&#xff0c;还可能导致最终结果偏差。 今天&#xff0c;我们…

金格iWebOffice控件在新版谷歌Chrome中不能加载了怎么办?

金格iWebOffice控件是由江西金格网络科技有限责任公司开发的中间件软件&#xff0c;主要用于在浏览器中直接编辑Word、Excel、PowerPoint等Office文档&#xff0c;曾经是一款优秀国产的WebOffice插件。 由于2022年Chrome等浏览器取消支持PPAPI接口&#xff0c;导致这款金格iWe…

实验6分类汇总

设计性实验 (1)查询每门课程的平均分,包括课程号和平均分。 SELECT Cno AS 课程号, AVG(Degree) AS 平均分 FROM Score065 GROUP BY Cno;(2)查询每门课程的平均分,包括课程号、课程名和平均分。 SELECT c.Cno AS 课程号, c.Cname AS 课程名, AVG(sc.Degree) AS 平均分 FROM …

如何通过交流沟通实现闭环思考模式不断实现自身强效赋能-250517

感谢一直以来和我交流沟通的朋友们。 闭环思考 文字部分(25-05-04)这一天是青年节,在这一天与青年朋友交流这个是事先规划好的: “可以猜一猜,博士会被撤销吗?导师会被处理吗?千万不要回复,放心里,过段时间看结果,看看自己预估社会能力如何。 观察社会新闻,可以用…

Python 3.11详细安装步骤(包含安装包)Python 3.11详细图文安装教程

文章目录 前言Python 3.11介绍Python 3.11安装包下载Python 3.11安装步骤 前言 作为当前最热门的编程语言之一&#xff0c;Python 3.11 不仅拥有简洁优雅的语法&#xff0c;还在性能上实现了飞跃&#xff0c;代码运行速度提升显著。无论是初入编程的小白&#xff0c;还是经验丰…

一个指令,让任意 AI 快速生成思维导图

大家好&#xff0c;我是安仔&#xff0c;一个每天都在压榨 AI 的躺平打工人。 今天分享一个 AI 办公小技巧&#xff0c;让你用一个指令让 AI 生成思维导图。 DeepSeek、Kimi、豆包都可以哈 &#xff5e; KimiXMind 安仔经常用 XMind 来绘制思维导图&#xff0c;但是 AI 是没…

FPGA图像处理(六)------ 图像腐蚀and图像膨胀

默认迭代次数为1&#xff0c;只进行一次腐蚀、膨胀 一、图像腐蚀 1.相关定义 2.图像腐蚀效果图 3.fpga实现 彩色图像灰度化&#xff0c;灰度图像二值化&#xff0c;图像缓存生成滤波模块&#xff08;3*3&#xff09;&#xff0c;图像腐蚀算法 timescale 1ns / 1ps // // Des…