目录
一、术前阶段
1.1 数据采集与预处理系统
1.2 特征提取与选择模块
1.3 大模型风险评估系统
二、术中阶段
2.1 智能手术规划系统
2.2 麻醉智能监控系统
三、术后阶段
四、技术验证体系
一、术前阶段
1.1 数据采集与预处理系统
伪代码实现
def collect_patient_data ( patient_id) :
ct_images = load_dicom_files( "path/to/ct_scans" )
mri_images = load_nii_files( "path/to/mri_scans" )
vital_signs = get_vital_parameters( "patient_records" )
medical_history = parse_medical_records( "text_records" )
gene_data = fetch_gene_profile( "genome_database" , patient_id)
return {
"images" : {
"CT" : ct_images, "MRI" : mri_images} ,
"vitals" : vital_signs,
"history" : medical_history,
"genes" : gene_data
}
def preprocess_data ( raw_data) :
filled_vitals = fill_missing_values( raw_data[ "vitals" ] , method= "mean" )
normalized_ct = normalize_image( raw_data[ "images" ] [ "CT" ] )
normalized_mri = normalize_image( raw_data[ "images" ] [ "MRI" ] )
encoded_history = encode_categorical( raw_data[ "history" ] )
return {
"images" : {
"CT" : normalized_ct, "MRI" : normalized_mri} ,
"vitals" : filled_vitals,
"history" : encoded_history
}
流程图
患者入院
数据采集
医学影像CT MRI
生命体征监测
电子病历解析
基因数据获取
DICOM解析
实时数据流
NLP处理
基因测序
标准化处理
结构化编码
突变位点提取
多模态融合
预处理完成
1.2 特征提取与选择模块
伪代码实现
def extract_imaging_features ( ct_image) :
segmented_mask = unet_predict( ct_image)
volume = calculate_volume( segmented_mask)
shape_features = extract_shape_descriptors( segmented_mask)
return {
** shape_features, "volume" : volume}
def select_clinical_features ( vitals, history) :
feature_importance = xgboost_feature_selection( vitals + history)
selected_features = filter_top_features( feature_importance, threshold= 0.1 )
return selected_features
流程图