Python----机器学习(模型评估:准确率、损失函数值、精确度、召回率、F1分数、混淆矩阵、ROC曲线和AUC值、Top-k精度)

news2025/5/13 5:22:21

一、模型评估 

1. 准确率(Accuracy):这是最基本的评估指标之一,表示模型在测试集上正确 分类样本的比例。对于分类任务而言,准确率是衡量模型性能的直观标准。

2. 损失函数值(Loss):观察模型在测试集上的损失函数值,可以帮助了解模型的 泛化能力。低损失值表明模型在未见过的数据上的表现较好。

3. 精确度(Precision):精确度是指所有被模型预测为正类的样本中实际为正类 的比例。它关注的是预测为正类的准确性。

4. 召回率(Recall):召回率是指所有实际为正类的样本中被模型正确识别为正类 的比例。它反映了模型识别出所有正类的能力。

5. F1分数(F1 Score):F1分数是精确度和召回率的调和平均值,适用于需要同时 考虑精确度和召回率的情况,特别是在类别分布不均衡时更为有用。

6. 混淆矩阵(Confusion Matrix):这是一个表格,展示了分类模型预测结果与 真实标签之间的比较,可以从中计算出精确度、召回率等指标。

7. ROC曲线和AUC值(Receiver Operating Characteristic Curve and Area Under the Curve):ROC曲线通过描绘不同阈值下的真正率(True Positive Rate, TPR)与假正率(False Positive Rate, FPR),来评估二分类模型的性能。 AUC(曲线下面积)是ROC曲线下的面积,其值范围从0到1,AUC值越接近1, 表示模型的分类性能越好。

8. Top-k精度:在多分类任务中,有时会考虑模型预测的前k个最可能类别中是否包 含正确答案,这种情况下会用到Top-k精度作为评估指标。

二、准确率(Accuracy)

        这是最基本的评估指标之一,表示模型在测试集上正确分类样本的比例。对于分类任 务而言,准确率是衡量模型性能的直观标准。

特点:

  • 直观但受类别不平衡影响大

三、损失函数值(Loss)

        模型预测结果与真实标签的差异量化值

四、精确度(Precision)

        预测为正类的样本中实际为正类的比例

五、召回率(Recall)

        实际为正类的样本中被正确预测的比例

六、F1分数(F1 Score)

        F1 分数是精确度(Precision)和召回率(Recall)的调和平均数,它综合考虑了模 型的预测精度和覆盖率。

七、混淆矩阵(Confusion Matrix)

        是一个表格,展示了分类模型预测结果与真实标签之间的比较,可以从中计算出精 确度、召回率等指标。

预测类别1预测类别2
真实类别1TPFN
真实类别2FPTN

八、ROC曲线和AUC值

        ROC曲线通过描绘不同阈值下的真正率(True Positive Rate, TPR)与假正率(False Positive Rate, FPR),来评估二分类模型的性能。AUC(曲线下面积)是ROC曲线 下的面积,其值范围从0到1,AUC值越接近1,表示模型的分类性能越好。

8.1、ROC曲线

        以假正率(FPR)为横轴,真正率(TPR)为纵轴的曲线

8.2、AUC值

        ROC曲线下的面积

九、Top-k精度

        模型预测概率前k高的类别中包含真实标签的比例

指标优点局限性适用场景
准确率直观易理解类别不平衡时失效平衡数据集
F1分数平衡精确度与召回率仅关注单一类别(二分类)不均衡数据、二分类任务
AUC不受阈值影响仅适用于二分类类别不平衡的二分类任务
Top-k精度容错性强计算复杂度高细粒度分类任务
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score, top_k_accuracy_score

# 真实标签与预测结果
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
y_proba = [[0.7, 0.2, 0.1],
           [0.1, 0.3, 0.6],
           [0.3, 0.4, 0.3],
           [0.8, 0.1, 0.1],
           [0.6, 0.2, 0.2],
           [0.2, 0.5, 0.3]]

# 计算各项指标
print("准确率:", accuracy_score(y_true, y_pred))
print("精确度(宏平均):", precision_score(y_true, y_pred, average='macro'))
print("召回率(宏平均):", recall_score(y_true, y_pred, average='macro'))
print("F1分数(宏平均):", f1_score(y_true, y_pred, average='macro'))
print("混淆矩阵:\n", confusion_matrix(y_true, y_pred))
print("Top-2精度:", top_k_accuracy_score(y_true, y_proba, k=2))

# 二分类场景下的AUC计算示例
y_true_binary = [0, 1, 1, 0]
y_proba_binary = [0.1, 0.9, 0.8, 0.3]
print("AUC值:", roc_auc_score(y_true_binary, y_proba_binary))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2373688.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux工作台文件操作命令全流程解析(高级篇之vim和nano精讲)

全文目录 1 简单易用的 Nano (入门之选)1.1 适用场景1.2 安装命令1.3 基础操作1.4 优点 2 功能强大的 Vim2.1 适用场景2.2 安装命令2.3 模式说明‌2.4 常用命令2.4.1 普通模式2.4.2 编辑模式2.4.3 可视模式2.4.4 命令行模式 3 参考文献 写在前面 作为运维或者研发,日…

大数据产品销售数据分析:基于Python机器学习产品销售数据爬虫可视化分析预测系统设计与实现

文章目录 大数据产品销售数据分析:基于Python机器学习产品销售数据爬虫可视化分析预测系统设计与实现一、项目概述二、项目说明三、研究意义四、系统总体架构设计总体框架技术架构数据可视化模块设计图后台管理模块设计数据库设计 五、开发技术介绍Flask框架Python爬…

VS2022 Qt配置Qxlsx

目录 1、下载QXlsx,并解压文件夹 ​编辑2、打开VS2022配置QXlsx 3、VS配置Qxslx库 方法一:常规方法 方法二:直接使用源码 方法三:将QXlsx添加到Qt安装目录(暂时尝试未成功) 1、下载QXlsx,…

OSPF案例

拓扑图: 要求: 1,R5为ISP,其上只能配置IP地址;R4作为企业边界路由器, 出口公网地址需要通过PPP协议获取,并进行chap认证 2,整个OSPF环境IP基于172.16.0.0/16划分;…

《用MATLAB玩转游戏开发》贪吃蛇的百变玩法:从命令行到AI对战

《用MATLAB玩转游戏开发:从零开始打造你的数字乐园》基础篇(2D图形交互)-🐍 贪吃蛇的百变玩法:从命令行到AI对战 🎮 欢迎来到这篇MATLAB贪吃蛇编程全攻略!本文将带你从零开始,一步步…

【数据结构与算法】图的基本概念与遍历

目录 一、图的基本概念 1.1 图的基本组成 1.2 图的分类 1.3 顶点的度数 1.4 路径与回路 1.5 子图与特殊图 二. 图的存储结构 2.1 邻接矩阵 2.2 邻接表 三、深度优先遍历 3.1 原理 3.2 实现步骤 3.3 代码实现 四、广度优先遍历 4.1 原理 4.2 实现步骤 4.3 代码…

Linux云服务器配置git开发环境

文章目录 1. 安装 git2. git clone3. git add .4. git commit -m 提交记录5. git push🍑 异常原因🍑 解决办法 6. git pull7. git log8. git rm9. git mv10. git status 1. 安装 git sudo yum install git -y2. git clone 此命令的作用是从远程仓库把代…

手机浏览器IP归属地查询全指南:方法与常见问题解答

在当今数字化时代,手机浏览器已成为人们日常生活中不可或缺的工具之一。然而,在使用手机浏览器的过程中,有时我们需要了解当前网络连接的IP归属地信息,那么,手机浏览器IP归属地怎么查看呢?本文将详细介绍几…

Microsoft Azure DevOps针对Angular项目创建build版本的yaml

Azure DevOps针对Angular项目创建build版本的yaml,并通过变量控制相应job的执行与否。 注意事项:代码前面的空格是通过Tab控制的而不是通过Space控制的。 yaml文件中包含一下内容: 1. 自动触发build 通过指定code branch使提交到此代码库的…

Linux系统管理与编程16:PXE自动化安装部署centos7.9操作系统

兰生幽谷,不为莫服而不芳; 君子行义,不为莫知而止休。 0.准备 1)防火墙和SELinux systemctl stop firewalld systemctl disable firewalld setenforce 0 sed -i s/^SELINUX.*/SELINUXdisabled/ /etc/selinux/config (很不好的…

如何通过ABAP获取SAP生产订单的目标成本

SAP存储生产订单成本的主要底表包括: COBK: CO凭证表头COEP: CO凭证行项目COSS: 来自CO内部的汇总数据COSP: 来自CO外部部的汇总数据 先说结论:SAP 对生产订单的目标成本是没有保存到底表的。那么如何通过代码的方式获取呢? K_KKB_KKBCS_O…

【leetcode100】最长重复子数组

1、题目描述 给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。 示例 1: 输入:nums1 [1,2,3,2,1], nums2 [3,2,1,4,7] 输出:3 解释:长度最长的公共子数组是 [3,2,1] 。示例 2&…

基于Django框架的股票分红数据爬虫和展示系统

项目截图 一、项目简介 本项目是一个基于 Django 框架的股票分红数据爬虫和展示系统。它可以从东方财富网站爬取股票分红数据,并将数据存储到 Django 数据库中,同时提供数据查询、导出和图表展示功能。该系统为用户提供了一个方便的平台,用于…

QT高级(1)QTableView自定义委托集合,一个类实现若干委托

自定义委托集合 1同系列文章2 功能3 源码 1同系列文章 QT中级(1)QTableView自定义委托(一)实现QSpinBox、QDoubleSpinBox委托 QT中级(2)QTableView自定义委托(二)实现QProgressBar委…

小芯片大战略:Chiplet技术如何重构全球半导体竞争格局?

在科技飞速发展的今天,半导体行业作为信息技术的核心领域之一,其发展速度和创新水平对全球经济的发展具有举足轻重的影响。然而,随着芯片制造工艺的不断进步,传统的单片集成方式逐渐遇到了技术瓶颈,如摩尔定律逐渐逼近…

普通IT的股票交易成长史--股价起伏的真相-缺口(2)

声明:本文章的内容只是自己学习的总结,不构成投资建议。价格行为理论学习可参考简介中的几位,感谢他们的无私奉献。 送给自己的话: 仓位就是生命,绝对不能满仓!!!!&…

MindSpore框架学习项目-ResNet药物分类-模型优化

目录 5.模型优化 5.1模型优化 6.结语 参考内容: 昇思MindSpore | 全场景AI框架 | 昇思MindSpore社区官网 华为自研的国产AI框架,训推一体,支持动态图、静态图,全场景适用,有着不错的生态 本项目可以在华为云modelar…

Kubernetes(k8s)学习笔记(八)--KubeSphere定制化安装

1执行下面的命令修改上一篇中yaml文件来实现定制化安装devops kubectl edit cm -n kubesphere-system ks-installer 主要是将devops几个配置由False改为True 然后使用下面的命令查看安装日志 kubectl logs -n kubesphere-system $(kubectl get pod -n kubesphere-system -l …

养生:为健康生活筑牢根基

养生并非遥不可及的目标,而是贯穿于日常生活的点滴之中。从饮食、运动到心态调节,每一个环节都对我们的健康有着重要意义。以下为你详细介绍养生的实用策略,助力你开启健康生活模式。 饮食养生:科学搭配,滋养生命 合…

Linux510 ssh服务 ssh连接

arning: Permanently added ‘11.1.1.100’ (ECDSA) to the list of known hosts. rooot11.1.1.100’s password: Permission denied, please try again. rooot11.1.1.100’s password: Permission denied, please try again 还没生效 登不上了 失效了 sshcaozx26成功登录 …