The Action Replay Process

news2025/5/11 20:15:09

Preface

A commonly used inequality

− x > ln ⁡ ( 1 − x ) , 0 < x < 1 -x > \ln(1 - x), \quad 0 < x < 1 x>ln(1x),0<x<1

Proof: Let f ( x ) = ln ⁡ ( 1 − x ) + x f(x) = \ln(1 - x) + x f(x)=ln(1x)+x, for 0 < x < 1 0 < x < 1 0<x<1. Then f ( 0 ) = 0 f(0) = 0 f(0)=0.

f ′ ( x ) = − 1 1 − x + 1 = x x − 1 < 0 f'(x) = \frac{-1}{1 - x} + 1 = \frac{x}{x - 1} < 0 f(x)=1x1+1=x1x<0

Hence, − x > ln ⁡ ( 1 − x ) , 0 < x < 1 -x > \ln(1 - x), \quad 0 < x < 1 x>ln(1x),0<x<1. Q.E.D.


Fundamental Theorem
If a n > − 1 a_n > -1 an>1, then

∏ n = 1 ∞ ( 1 + a n ) = 0 ⇔ ∑ n = 1 ∞ ln ⁡ ( 1 + a n ) = − ∞ \prod_{n=1}^\infty (1 + a_n) = 0 \Leftrightarrow \sum_{n=1}^\infty \ln(1 + a_n) = -\infty n=1(1+an)=0n=1ln(1+an)=

Proof: Let P k = ∏ n = 1 k ( 1 + a n ) P_k = \prod_{n=1}^k (1 + a_n) Pk=n=1k(1+an), then

ln ⁡ P k = ln ⁡ ( ∏ n = 1 k ( 1 + a n ) ) = ∑ n = 1 k ln ⁡ ( 1 + a n ) \ln P_k = \ln\left(\prod_{n=1}^k (1 + a_n)\right) = \sum_{n=1}^k \ln(1 + a_n) lnPk=ln(n=1k(1+an))=n=1kln(1+an)

Thus,

∑ n = 1 ∞ ln ⁡ ( 1 + a n ) = − ∞ ⇔ lim ⁡ k → ∞ ∑ n = 1 k ln ⁡ ( 1 + a n ) = − ∞ ⇔ lim ⁡ k → ∞ ln ⁡ P k = − ∞ ⇔ lim ⁡ k → ∞ P k = 0 \sum_{n=1}^\infty \ln(1 + a_n) = -\infty \Leftrightarrow \lim_{k \to \infty} \sum_{n=1}^k \ln(1 + a_n) = -\infty \Leftrightarrow \lim_{k \to \infty} \ln P_k = -\infty \Leftrightarrow \lim_{k \to \infty} P_k = 0 n=1ln(1+an)=klimn=1kln(1+an)=klimlnPk=klimPk=0

Q.E.D.


Corollary
If 0 ≤ b n < 1 0 \le b_n < 1 0bn<1 and ∑ n = 1 ∞ b n = + ∞ \sum_{n=1}^\infty b_n = +\infty n=1bn=+, then

∏ n = 1 ∞ ( 1 − b n ) = 0 \prod_{n=1}^\infty (1 - b_n) = 0 n=1(1bn)=0

Proof: Consider the subsequence { b n k } \{b_{n_k}\} {bnk} consisting of non-zero b n b_n bn. Since − b n k > − 1 -b_{n_k} > -1 bnk>1, and applying the fundamental theorem, we have:

∏ n = 1 ∞ ( 1 − b n ) = ∏ k = 1 ∞ ( 1 − b n k ) = 0 ⇔ ∑ k = 1 ∞ ln ⁡ ( 1 − b n k ) = − ∞ \prod_{n=1}^\infty (1 - b_n) = \prod_{k=1}^\infty (1 - b_{n_k}) = 0 \Leftrightarrow \sum_{k=1}^\infty \ln(1 - b_{n_k}) = -\infty n=1(1bn)=k=1(1bnk)=0k=1ln(1bnk)=

We now show ∑ k = 1 ∞ ln ⁡ ( 1 − b n k ) = − ∞ \sum_{k=1}^\infty \ln(1 - b_{n_k}) = -\infty k=1ln(1bnk)=.
Given 0 < 1 − b n k < 1 0 < 1 - b_{n_k} < 1 0<1bnk<1, we have ln ⁡ ( 1 − b n k ) < 0 \ln(1 - b_{n_k}) < 0 ln(1bnk)<0, and ∑ k = 1 ∞ b n k = + ∞ \sum_{k=1}^\infty b_{n_k} = +\infty k=1bnk=+. It’s not immediately obvious, so we proceed by contradiction:

Assume ∑ k = 1 ∞ ln ⁡ ( 1 − b n k ) ≠ − ∞ \sum_{k=1}^\infty \ln(1 - b_{n_k}) \ne -\infty k=1ln(1bnk)=. Since each term is negative, this implies convergence, i.e.,

∑ k = 1 ∞ ln ⁡ ( 1 − b n k ) > − ∞ \sum_{k=1}^\infty \ln(1 - b_{n_k}) > -\infty k=1ln(1bnk)>

But ∑ k = 1 ∞ ( − b n k ) = − ∞ ≥ ∑ k = 1 ∞ ln ⁡ ( 1 − b n k ) > − ∞ \sum_{k=1}^\infty (-b_{n_k}) = -\infty \ge \sum_{k=1}^\infty \ln(1 - b_{n_k}) > -\infty k=1(bnk)=k=1ln(1bnk)>, a contradiction.
Therefore, ∑ k = 1 ∞ ln ⁡ ( 1 − b n k ) = − ∞ \sum_{k=1}^\infty \ln(1 - b_{n_k}) = -\infty k=1ln(1bnk)=, and so

∏ n = 1 ∞ ( 1 − b n ) = 0 \prod_{n=1}^\infty (1 - b_n) = 0 n=1(1bn)=0

Q.E.D.


The Essence of Mathematical Truth: Induction
Observe a linear-looking relation, fantasize wildly, then coldly examine whether it is truly valid.

Given X 1 X_1 X1 and the recursive formula:

X n + 1 = X n + β n ( ξ n − X n ) = ( 1 − β n ) X n + β n ξ n X_{n+1} = X_n + \beta_n(\xi_n - X_n) = (1 - \beta_n)X_n + \beta_n \xi_n Xn+1=Xn+βn(ξnXn)=(1βn)Xn+βnξn

Show that

X n + 1 = ∑ j = 1 n ξ j β j ∏ i = j n − 1 ( 1 − β i + 1 ) + X 1 ∏ i = 1 n ( 1 − β i ) X_{n+1} = \sum_{j=1}^{n} \xi_j \beta_j \prod_{i=j}^{n-1} (1 - \beta_{i+1}) + X_1 \prod_{i=1}^n (1 - \beta_i) Xn+1=j=1nξjβji=jn1(1βi+1)+X1i=1n(1βi)

Proof:

  1. Base case: n = 1 n = 1 n=1

    X 2 = ( 1 − β 1 ) X 1 + β 1 ξ 1 = ξ 1 β 1 + X 1 ( 1 − β 1 ) X_2 = (1 - \beta_1)X_1 + \beta_1 \xi_1 = \xi_1 \beta_1 + X_1 (1 - \beta_1) X2=(1β1)X1+β1ξ1=ξ1β1+X1(1β1)

    holds.

  2. Inductive step: assume true for n n n, prove for n + 1 n+1 n+1:

    X n + 2 = ( 1 − β n + 1 ) X n + 1 + β n + 1 ξ n + 1 X_{n+2} = (1 - \beta_{n+1})X_{n+1} + \beta_{n+1} \xi_{n+1} Xn+2=(1βn+1)Xn+1+βn+1ξn+1

    Plug in inductive hypothesis:

    = ( 1 − β n + 1 ) [ ∑ j = 1 n ξ j β j ∏ i = j n − 1 ( 1 − β i + 1 ) + X 1 ∏ i = 1 n ( 1 − β i ) ] + β n + 1 ξ n + 1 = (1 - \beta_{n+1})\left[\sum_{j=1}^{n} \xi_j \beta_j \prod_{i=j}^{n-1} (1 - \beta_{i+1}) + X_1 \prod_{i=1}^n (1 - \beta_i)\right] + \beta_{n+1} \xi_{n+1} =(1βn+1)[j=1nξjβji=jn1(1βi+1)+X1i=1n(1βi)]+βn+1ξn+1

    = ∑ j = 1 n + 1 ξ j β j ∏ i = j n ( 1 − β i + 1 ) + X 1 ∏ i = 1 n + 1 ( 1 − β i ) = \sum_{j=1}^{n+1} \xi_j \beta_j \prod_{i=j}^{n} (1 - \beta_{i+1}) + X_1 \prod_{i=1}^{n+1} (1 - \beta_i) =j=1n+1ξjβji=jn(1βi+1)+X1i=1n+1(1βi)

  3. By induction, the formula holds for all positive integers n n n. Q.E.D.


Now, let’s relax for a while — it’s movie time.


1. Definition of Action Replay Process

Given an n n n-step finite MDP with a possibly varying learning rate α \alpha α, in step i i i, the agent is in state x i x_i xi, takes action a i a_i ai, receives random reward r i r_i ri, and transitions to a new state y i y_i yi.

Action Replay Process (ARP) is a re-examination of state x x x and action a a a within a given MDP.

Suppose we focus on state x x x and action a a a, and consider an MDP consisting of n n n steps.

We add a step 0 in which the agent immediately terminates and receives reward Q 0 ( x , a ) Q_0(x,a) Q0(x,a).

During steps 1 to n n n, due to MDP randomness, the agent may take action a a a in state x x x at time steps 1 ≤ n i 1 , n i 2 , . . . , n i ∗ ≤ n 1 \le n^{i_1}, n^{i_2}, ..., n^{i_*} \le n 1ni1,ni2,...,nin.

If action a a a is never taken at x x x in this episode, the only opportunity for it is at step 0.

When i ∗ ≥ 1 i_* \ge 1 i1, to determine ARP’s next reward and state, we sample an index n i e n^{i_e} nie as follows:

n i e = { n i ∗ , with probability  α n i ∗ n i ∗ − 1 , with probability  ( 1 − α n i ∗ ) α n i ∗ − 1 ⋮ 0 , with probability  ∏ i = 1 i ∗ ( 1 − α n i ) n^{i_e} = \begin{cases} n^{i_*}, & \text{with probability } \alpha_{n^{i_*}} \\ n^{i_{*-1}}, & \text{with probability } (1 - \alpha_{n^{i_*}})\alpha_{n^{i_{*-1}}} \\ \vdots \\ 0, & \text{with probability } \prod_{i=1}^{i_*}(1 - \alpha_{n^i}) \end{cases} nie= ni,ni∗−1,0,with probability αniwith probability (1αni)αni∗−1with probability i=1i(1αni)

Then, after one ARP step, the state < x , n > <x, n> <x,n> transitions to < y n i e , n i e − 1 > <y_{n^{i_e}}, n^{i_e} - 1> <ynie,nie1>, and the reward is r n i e r_{n^{i_e}} rnie.
Clearly, n i e − 1 < n n^{i_e} - 1 < n nie1<n, so ARP terminates with probability 1. Thus, ARP is a finite process almost surely.

To summarize, the core transition formula is:

< x , n > → a < y n i e , n i e − 1 > , reward  r n i e <x,n> \overset{a}{\rightarrow} <y_{n^{i_e}}, n^{i_e} - 1>, \quad \text{reward } r_{n^{i_e}} <x,n>a<ynie,nie1>,reward rnie


2. Properties of the Action Replay Process

We now examine ARP’s properties, particularly in comparison to MDPs. Given an MDP rule and a (non-terminating) instance, we can construct an ARP accordingly.

Property 1

∀ n , x , a , Q A R P ∗ ( < x , n > , a ) = Q n ( x , a ) \forall n, x, a,\quad Q^*_{ARP}(<x, n>, a) = Q_n(x, a) n,x,a,QARP(<x,n>,a)=Qn(x,a)

Proof:
Using mathematical induction on n n n:

  1. Base case n = 1 n=1 n=1:

    • If the MDP did not take a a a at x x x in step 1, ARP gives reward Q 0 ( x , a ) = 0 = Q 1 ( x , a ) Q_0(x,a) = 0 = Q_1(x,a) Q0(x,a)=0=Q1(x,a)

    • If ( x , a ) = ( x 1 , a 1 ) (x,a) = (x_1, a_1) (x,a)=(x1,a1), then:

      Q A R P ∗ ( < x , 1 > , a ) = α 1 r 1 + ( 1 − α 1 ) Q 0 ( x , a ) = α 1 r 1 = Q 1 ( x , a ) Q^*_{ARP}(<x,1>, a) = \alpha_1 r_1 + (1 - \alpha_1) Q_0(x,a) = \alpha_1 r_1 = Q_1(x,a) QARP(<x,1>,a)=α1r1+(1α1)Q0(x,a)=α1r1=Q1(x,a)

  2. Inductive step: Assume Q A R P ∗ ( < x , k − 1 > , a ) = Q k − 1 ( x , a ) Q^*_{ARP}(<x, k-1>, a) = Q_{k-1}(x,a) QARP(<x,k1>,a)=Qk1(x,a), show for k k k:

    • If ( x , a ) ≠ ( x k , a k ) (x,a) \ne (x_k, a_k) (x,a)=(xk,ak), then:

      Q k ( x , a ) = Q k − 1 ( x , a ) = Q A R P ∗ ( < x , k > , a ) Q_k(x,a) = Q_{k-1}(x,a) = Q^*_{ARP}(<x, k>, a) Qk(x,a)=Qk1(x,a)=QARP(<x,k>,a)

    • If ( x , a ) = ( x k , a k ) (x,a) = (x_k, a_k) (x,a)=(xk,ak), then:

      Q A R P ∗ ( < x , k > , a ) = α k [ r k + γ max ⁡ a Q k − 1 ( y k , a ) ] + ( 1 − α k ) Q k − 1 ( x , a ) = Q k ( x , a ) Q^*_{ARP}(<x,k>, a) = \alpha_k [r_k + \gamma \max_a Q_{k-1}(y_k,a)] + (1 - \alpha_k) Q_{k-1}(x,a) = Q_k(x,a) QARP(<x,k>,a)=αk[rk+γamaxQk1(yk,a)]+(1αk)Qk1(x,a)=Qk(x,a)

  3. Therefore, Q A R P ∗ ( < x , n > , a ) = Q n ( x , a ) Q^*_{ARP}(<x,n>, a) = Q_n(x,a) QARP(<x,n>,a)=Qn(x,a). Q.E.D.


Property 2 In the ARP ${<x_i,n_i>}$, for all l , s , ϵ > 0 l, s, \epsilon > 0 l,s,ϵ>0, there exists h > l h > l h>l such that for all n 1 > h n_1 > h n1>h,

P ( n s + 1 < l ) < ϵ P(n_{s+1} < l) < \epsilon P(ns+1<l)<ϵ

Proof:

Let us first consider the final step, that is, the case where n i e < n i l n^{i_e} < n^{i_l} nie<nil or even lower.
Given in the ARP, starting from < x , h > <x, h> <x,h>, after taking action a a a, the probability of reaching a level lower than l l l in one step is:

∑ j = 0 i l − 1 [ α n j ∏ k = j + 1 i h ( 1 − α n k ) ] = ∑ j = 0 i l − 1 [ α n j ∏ k = j + 1 i l − 1 ( 1 − α n k ) ] [ ∏ i = i l i h ( 1 − α n i ) ] = [ ∏ i = i l i h ( 1 − α n i ) ] ∑ j = 0 i l − 1 [ α n j ∏ k = j + 1 i l − 1 ( 1 − α n k ) ] \sum_{j=0}^{i_l - 1} \left[ \alpha_{n^j} \prod_{k=j+1}^{i_h} (1 - \alpha_{n^k}) \right] = \sum_{j=0}^{i_l - 1} \left[ \alpha_{n^j} \prod_{k=j+1}^{i_l - 1} (1 - \alpha_{n^k}) \right] \left[ \prod_{i=i_l}^{i_h} (1 - \alpha_{n^i}) \right] = \left[ \prod_{i=i_l}^{i_h} (1 - \alpha_{n^i}) \right] \sum_{j=0}^{i_l - 1} \left[ \alpha_{n^j} \prod_{k=j+1}^{i_l - 1} (1 - \alpha_{n^k}) \right] j=0il1 αnjk=j+1ih(1αnk) =j=0il1 αnjk=j+1il1(1αnk) [i=ilih(1αni)]=[i=ilih(1αni)]j=0il1 αnjk=j+1il1(1αnk)

But note that:

∑ j = 0 i l − 1 [ α n j ∏ k = j + 1 i l − 1 ( 1 − α n k ) ] = 1 \sum_{j=0}^{i_l - 1} \left[ \alpha_{n^j} \prod_{k=j+1}^{i_l - 1} (1 - \alpha_{n^k}) \right] = 1 j=0il1 αnjk=j+1il1(1αnk) =1

Therefore,

∑ j = 0 i l − 1 [ α n j ∏ k = j + 1 i h ( 1 − α n k ) ] = ∏ i = i l i h ( 1 − α n i ) < e − ∑ i = i l i h α n i \sum_{j=0}^{i_l - 1} \left[ \alpha_{n^j} \prod_{k=j+1}^{i_h} (1 - \alpha_{n^k}) \right] = \prod_{i=i_l}^{i_h} (1 - \alpha_{n^i}) < e^{-\sum_{i=i_l}^{i_h} \alpha_{n^i}} j=0il1 αnjk=j+1ih(1αnk) =i=ilih(1αni)<ei=ilihαni

As long as every subsequence of { α n } \{\alpha_n\} {αn} diverges, then as h → ∞ h \to \infty h:

∑ j = 0 i l − 1 [ α n j ∏ k = j + 1 i h ( 1 − α n k ) ] = ∏ i = i l i h ( 1 − α n i ) < e − ∑ i = i l i h α n i → 0 \sum_{j=0}^{i_l - 1} \left[ \alpha_{n^j} \prod_{k=j+1}^{i_h} (1 - \alpha_{n^k}) \right] = \prod_{i=i_l}^{i_h} (1 - \alpha_{n^i}) < e^{-\sum_{i=i_l}^{i_h} \alpha_{n^i}} \to 0 j=0il1 αnjk=j+1ih(1αnk) =i=ilih(1αni)<ei=ilihαni0

Moreover, since the MDP is finite, we have:

∀ l j ∈ N ∗ , ∀ η j > 0 , ∃ M j > 0 , ∀ n j > M j , ∀ X j , a j , \forall l_j \in \mathbb{N}^*, \forall \eta_j > 0, \exists M_j > 0, \forall n_j > M_j, \forall X_j, a_j, ljN,ηj>0,Mj>0,nj>Mj,Xj,aj,

starting from < X j , n j > <X_j, n_j> <Xj,nj>, after taking action a j a_j aj,

P ( n j + 1 ≥ l j ) = 1 − η j P(n_{j+1} \ge l_j) = 1 - \eta_j P(nj+1lj)=1ηj

Using the index j j j, we recursively apply this conclusion from step s s s back to step 1. Then, the probability of reaching at least l = l s l = l_s l=ls is at least:

∏ j = 1 s ( 1 − η j ) = 1 − ϵ \prod_{j=1}^{s} (1 - \eta_j) = 1 - \epsilon j=1s(1ηj)=1ϵ

where n j + 1 ≥ l j n_{j+1} \ge l_j nj+1lj, and < X j + 1 , n j + 1 > <X_{j+1}, n_{j+1}> <Xj+1,nj+1> is reached from < x j , n j > <x_j, n_j> <xj,nj> after executing a j a_j aj. Q.E.D.

Now, define:

P x y ( n ) [ a ] = ∑ m = 1 n − 1 P < x , n > , < y , m > A R P [ a ] P_{xy}^{(n)}[a] = \sum_{m=1}^{n-1} P_{<x,n>,<y,m>}^{ARP}[a] Pxy(n)[a]=m=1n1P<x,n>,<y,m>ARP[a]

Lemma:
Let ξ n {\xi_n} ξn be a sequence of bounded random variables with expectation E \mathfrak{E} E, and let 0 ≤ β n < 1 0 \le \beta_n < 1 0βn<1 satisfy ∑ i = 1 ∞ β i = + ∞ \sum_{i=1}^{\infty} \beta_i = +\infty i=1βi=+ and ∑ i = 1 ∞ β i 2 < + ∞ \sum_{i=1}^{\infty} \beta_i^2 < +\infty i=1βi2<+.
Define the sequence X n + 1 = X n + β n ( ξ n − X n ) X_{n+1} = X_n + \beta_n(\xi_n - X_n) Xn+1=Xn+βn(ξnXn). Then:

P ( lim ⁡ n → ∞ X n = E ) = 1 P\left( \lim_{n \to \infty} X_n = \mathfrak{E} \right) = 1 P(nlimXn=E)=1

My attempt:

X n + 1 = X n + β n ( ξ n − X n ) = ( 1 − β n ) X n + β n ξ n X_{n+1} = X_n + \beta_n(\xi_n - X_n) = (1 - \beta_n) X_n + \beta_n \xi_n Xn+1=Xn+βn(ξnXn)=(1βn)Xn+βnξn

By induction, we obtain:

X n + 1 = ∑ j = 1 n ξ j β j ∏ i = j n − 1 ( 1 − β i + 1 ) + X 1 ∏ i = 1 n ( 1 − β i ) X_{n+1} = \sum_{j=1}^{n} \xi_j \beta_j \prod_{i=j}^{n-1} (1 - \beta_{i+1}) + X_1 \prod_{i=1}^{n} (1 - \beta_i) Xn+1=j=1nξjβji=jn1(1βi+1)+X1i=1n(1βi)

From a corollary of a fundamental theorem:

∏ i = 1 ∞ ( 1 − β i ) = 0 \prod_{i=1}^{\infty} (1 - \beta_i) = 0 i=1(1βi)=0

Hence:

lim ⁡ n → ∞ X n = lim ⁡ n → ∞ ∑ j = 1 n ξ j β j ∏ i = j + 1 n ( 1 − β i ) = lim ⁡ n → ∞ ∑ j = 1 n ξ j β j ∏ i = j + 1 n ( 1 − β i ) 1 − 0 \lim_{n \to \infty} X_n = \lim_{n \to \infty} \sum_{j=1}^{n} \xi_j \beta_j \prod_{i=j+1}^{n} (1 - \beta_i) = \frac{ \lim_{n \to \infty} \sum_{j=1}^{n} \xi_j \beta_j \prod_{i=j+1}^{n} (1 - \beta_i) }{1 - 0} nlimXn=nlimj=1nξjβji=j+1n(1βi)=10limnj=1nξjβji=j+1n(1βi)

= lim ⁡ n → ∞ ∑ j = 1 n ξ j β j ∏ i = j + 1 n ( 1 − β i ) 1 − ∏ i = 1 ∞ ( 1 − β i ) = lim ⁡ n → ∞ ∑ j = 1 n ξ j β j ∏ i = j + 1 n ( 1 − β i ) 1 − ∏ i = 1 n ( 1 − β i ) = \frac{ \lim_{n \to \infty} \sum_{j=1}^{n} \xi_j \beta_j \prod_{i=j+1}^{n} (1 - \beta_i) }{1 - \prod_{i=1}^{\infty} (1 - \beta_i)} = \lim_{n \to \infty} \sum_{j=1}^{n} \xi_j \frac{ \beta_j \prod_{i=j+1}^{n} (1 - \beta_i) }{1 - \prod_{i=1}^{n} (1 - \beta_i)} =1i=1(1βi)limnj=1nξjβji=j+1n(1βi)=nlimj=1nξj1i=1n(1βi)βji=j+1n(1βi)

Property 3

P { lim ⁡ n → ∞ P x y ( n ) [ a ] = P x y [ a ] } = 1 , P [ lim ⁡ n → ∞ R x ( n ) ( a ) = R x ( a ) ] = 1 P\left\{ \lim_{n \to \infty} P_{xy}^{(n)}[a] = P_{xy}[a] \right\} = 1, \quad P\left[ \lim_{n \to \infty} \mathfrak{R}_{x}^{(n)}(a) = \mathfrak{R}_{x}(a) \right] = 1 P{nlimPxy(n)[a]=Pxy[a]}=1,P[nlimRx(n)(a)=Rx(a)]=1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2373394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

k8s之ingress解释以及k8s创建业务的流程定义

matchLabels ingress Ingress 是反向代理规则&#xff0c;用来规定 HTTP/S 请求应该被转发到哪个 Service 上&#xff0c;比如根据请求中不同的 Host 和 url 路径让请求落到不同的 Service 上。 Ingress Controller 就是一个反向代理程序&#xff0c;它负责解析 Ingress 的反向…

从0开始学习大模型--Day05--理解prompt工程

提示词工程原理 N-gram&#xff1a;通过统计&#xff0c;计算N个词共同出现的概率&#xff0c;从而预测下一个词是什么。 深度学习模型&#xff1a;有多层神经网络组成&#xff0c;可以自动从数据中学习特征&#xff0c;让模型通过不断地自我学习不断成长&#xff0c;直到模型…

计算机视觉——基于树莓派的YOLO11模型优化与实时目标检测、跟踪及计数的实践

概述 设想一下&#xff0c;你在多地拥有多个仓库&#xff0c;要同时监控每个仓库的实时状况&#xff0c;这对于时间和精力而言&#xff0c;都构成了一项艰巨挑战。从成本和可靠性的层面考量&#xff0c;大规模部署计算设备也并非可行之策。一方面&#xff0c;大量计算设备的购…

【计算机视觉】OpenCV项目实战:OpenCV_Position 项目深度解析:相机定位技术

OpenCV_Position 项目深度解析&#xff1a;基于 OpenCV 的相机定位技术 一、项目概述二、技术原理&#xff08;一&#xff09;单应性矩阵&#xff08;Homography&#xff09;&#xff08;二&#xff09;算法步骤&#xff08;三&#xff09;相机内参矩阵 三、项目实战运行&#…

LAMMPS分子动力学基于周期扰动法的黏度计算

关键词&#xff1a;黏度,周期扰动法&#xff0c;SPC/E水分子&#xff0c;分子动力学&#xff0c;lammps 目前分子动力学计算黏度主要有以下方法&#xff1a;&#xff08;1&#xff09;基于 Green - Kubo 关系的方法。从微观角度出发&#xff0c;利用压力张量自相关函数积分计算…

unity通过transform找子物体只能找子级

unity通过transform找子物体只能找子级&#xff0c;孙级以及更低级别都找不到&#xff0c;只能找到自己的下一级 如果要获取孙级以下的物体&#xff0c;最快的方法还是直接public挂载

ThinkPad T440P如何从U盘安装Ubuntu24.04系统

首先制作一个安装 U 盘。我使用的工具是 Rufus &#xff0c;它的官网是 rufus.ie &#xff0c;去下载最新版就可以了。直接打开这个工具&#xff0c;选择自己从ubuntu官网下载Get Ubuntu | Download | Ubuntu的iso镜像制作U盘安装包即可。 其次安装之前&#xff0c;还要对 Thi…

嵌入式开发学习(阶段二 C语言基础)

C语言&#xff1a;第05天笔记 内容提要 分支结构 条件判断用if语句实现分支结构用switch语句实现分支结构 分支结构 条件判断 条件判断&#xff1a;根据某个条件成立与否&#xff0c;决定是否执行指定的操作。 条件判断的结果是逻辑值&#xff0c;也就是布尔类型值&#…

从人体姿态到机械臂轨迹:基于深度学习的Kinova远程操控系统架构解析

在工业自动化、医疗辅助、灾难救援与太空探索等前沿领域&#xff0c;Kinova轻型机械臂凭借7自由度关节设计和出色负载能力脱颖而出。它能精准完成物体抓取、复杂装配和精细操作等任务。然而&#xff0c;实现人类操作者对Kinova机械臂的直观高效远程控制一直是技术难题。传统远程…

NX949NX952美光科技闪存NX961NX964

NX949NX952美光科技闪存NX961NX964 在半导体存储领域&#xff0c;美光科技始终扮演着技术引领者的角色。其NX系列闪存产品线凭借卓越的性能与创新设计&#xff0c;成为数据中心、人工智能、高端消费电子等场景的核心组件。本文将围绕NX949、NX952、NX961及NX964四款代表性产品…

【Bootstrap V4系列】学习入门教程之 组件-输入组(Input group)

Bootstrap V4系列 学习入门教程之 组件-输入组&#xff08;Input group&#xff09; 输入组&#xff08;Input group&#xff09;Basic example一、Wrapping 包装二、Sizing 尺寸三、Multiple addons 多个插件四、Button addons 按钮插件五、Buttons with dropdowns 带下拉按钮…

VS “筛选器/文件夹”

每天学习一个VS小技巧&#xff1a; 我在VS创建筛选器的时候&#xff0c;想要想要同步计算机上的文件目录&#xff0c;但是发现并未 同步。 例如我在这儿创建了一个筛选器IoManager 但是在UI这个文件夹里并未创建对应的IoManager文件夹 我右击也没有打开文件所在位置 然后我…

powerbuilder9.0中文版

经常 用这个版本号写小软件,非常喜欢这个开发软件 . powerbuilder9.0 非常的小巧,快捷,功能强大,使用方便. 我今天用软件 自己汉化了一遍&#xff0c;一些常用的界面都已经翻译成中文。 我自己用的&#xff0c;以后有什么界面需要翻译&#xff0c;再更新一下。 放在这里留个…

基于C语言的TCP通信测试程序开发指南

一、TCP通信基础原理 1.1 通信流程概述 TCP通信采用客户端-服务器模型&#xff0c;核心流程如下&#xff1a; 服务器端&#xff1a; 创建套接字&#xff08;Socket&#xff09; 绑定地址和端口&#xff08;Bind&#xff09; 开始监听&#xff08;Listen&#xff09; 接受…

教育系统源码如何支持白板直播与刷题功能?功能开发与优化探索

很多行业内同学疑问&#xff0c;如何在教育系统源码中支持白板直播和刷题功能&#xff1f;本篇文章&#xff0c;小编将从功能设计、技术实现到性能优化&#xff0c;带你全面了解这个过程。 一、白板直播功能的核心需求与技术挑战 实时交互与同步性 白板直播的核心是“实时性”。…

再度深入理解PLC的输入输出接线

本文再次重新梳理&#xff1a; 两线式/三线式传感器的原理及接线、PLC的输入和输出接线&#xff0c;深入其内部原理&#xff0c;按照自己熟悉的方式去理解该知识 在此之前&#xff0c;需要先统一几个基础知识点&#xff1a; 在看任何电路的时候&#xff0c;需要有高低电压差&…

k8s(11) — 探针和钩子

钩子和探针的区别&#xff1a; 在 Kubernetes&#xff08;k8s&#xff09;中&#xff0c;钩子&#xff08;Hooks&#xff09;和探针&#xff08;Probes&#xff09;是保障应用稳定运行的重要机制&#xff0c;不过它们的用途和工作方式存在差异&#xff0c;以下为你详细介绍&…

使用jmeter对数据库进行压力测试

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 前言 很多人提到 jmeter时&#xff0c;只会说到jmeter进行接口自动化或接口性能测试&#xff0c;其实jmeter还能对数据库进行自动化操作。个人常用的场景有以下&…

Kubernetes生产实战(十四):Secret高级使用模式与安全实践指南

一、Secret核心类型解析 类型使用场景自动管理机制典型字段Opaque (默认)自定义敏感数据需手动创建data字段存储键值对kubernetes.io/dockerconfigjson私有镜像仓库认证kubelet自动更新.dockerconfigjsonkubernetes.io/tlsTLS证书管理Cert-Manager可自动化tls.crt/tls.keykube…

05 mysql之DDL

一、SQL的四个分类 我们通常可以将 SQL 分为四类&#xff0c;分别是&#xff1a; DDL&#xff08;数据定义语言&#xff09;、DML&#xff08;数据操作语言&#xff09;、 DCL&#xff08;数据控制语言&#xff09;和 TCL&#xff08;事务控制语言&#xff09;。 DDL 用于创建…