GAF-CNN-SSA-LSSVM故障诊断/分类预测,附带模型研究报告(Matlab)

news2025/5/11 1:11:42

GAF-CNN-SSA-LSSVM故障诊断/分类预测,附带模型研究报告(Matlab)

目录

    • GAF-CNN-SSA-LSSVM故障诊断/分类预测,附带模型研究报告(Matlab)
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

本研究提出的GAF-CNN-SSA-LSSVM方法,将格拉姆角场、卷积神经网络、麻雀搜索算法和最小二乘支持向量机有机结合,旨在解决传统方法在处理复杂故障信号时的难题。该方法能够有效将一维故障数据信号转为二维图像,通过卷积神经网络自适应提取故障特征,利用麻雀搜索算法优化最小二乘支持向量机参数,提高故障诊断的准确性和效率。注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。
本方法针对传统故障诊断中信号特征提取不足、分类器泛化能力弱等问题,提出了一种融合信号转换、深度学习与智能优化的混合模型。其创新性体现在:

多模态数据融合:通过GAF将一维振动信号(excel中一行算一个信号样本)映射为二维图像,保留时序特征的同时引入空间相关性;

特征提取优化:采用CNN自动学习图像中的深层故障特征,避免人工特征工程的局限性;

参数智能优化:利用麻雀算法(SSA)优化LSSVM超参数,突破传统网格搜索效率瓶颈;

模型轻量化设计:通过降维处理与特征压缩,在保证精度前提下降低计算复杂度。
在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信回复GAF-CNN-SSA-LSSVM故障诊断/分类预测,附带模型研究报告(Matlab)



%% 计算准确率
layer = 'fullconnect3';
p_train = activations(net,trainD,layer,'OutputAs','rows');
t_train = double(train_Y);
p_test = activations(net,testD,layer,'OutputAs','rows');
t_test = double(test_Y);
%% 优化算法寻最优权值阈值
disp(' ')
disp('优化LSSVM:')
NN = 20;                             % 初始种群规模要大于20
Max_iteration = 20;                  % 最大进化代数20
lb = [10^-6,10^-6];                  % LSSVM的两个最佳参数阈值的上下限
ub = [10^6,10^6];
dim = 2;
fobj=@(x)fun(x,p_train,t_train,p_test,t_test);

P_percent = 0.3;    % The population size of producers accounts for "P_percent" percent of the total population size       
pNum = round(NN *  P_percent);    % The population size of the producers   
lb= lb.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= ub.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : NN
    
    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );  
    fit( i ) = fobj( x( i, : ) ) ;                       
end
pFit = fit;                       
pX = x; 
 XX=pX;    

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2372754.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据分析怎么做?高效的数据分析方法有哪些?

目录 一、数据分析的对象和目的 (一)数据分析的常见对象 (二)数据分析的目的 二、数据分析怎么做? (一)明确问题 (二)收集数据 (三)清洗和…

stm32之TIM定时中断详解

目录 1.引入1.1 简介1.2 类型1.2.1 基本定时器1.2.2 通用定时器1. 触发控制单元 (Trigger Control Unit)2. 输入捕获单元 (Input Capture Unit)3. 输出比较单元 (Output Compare Unit)4. CNT 计数器5. 自动重装载寄存器 (ARR)6. 预分频器 (PSC)7. 中断与 DMA 事件8. 刹车功能 (…

【el-admin】el-admin关联数据字典

数据字典使用 一、新增数据字典1、新增【图书状态】和【图书类型】数据字典2、编辑字典值 二、代码生成配置1、表单设置2、关联字典3、验证关联数据字典 三、查询操作1、模糊查询2、按类别查询(下拉框) 四、数据校验 一、新增数据字典 1、新增【图书状态…

【LUT技术专题】ECLUT代码解读

目录 原文概要 1. 训练 2. 转表 3. 测试 本文是对ECLUT技术的代码解读,原文解读请看ECLUT。 原文概要 ECLUT通过EC模块增大网络感受野,提升超分效果,实现SRLUT的改进,主要是2个创新点: 提出了一个扩展卷积&…

大物重修之浅显知识点

第一章 质点运动学 例1 知识点公式如下: 例2 例3 例4 例5 例6 第四章 刚体的转动 例1 例2 例3 例4 例5 例6 第五章 简谐振动 例1 例2 例3 第六章 机械波 第八章 热力学基础 第九章 静电场 第十一章 恒定磁场…

并发设计模式实战系列(16):屏障(Barrier)

🌟 大家好,我是摘星! 🌟 今天为大家带来的是并发设计模式实战系列,第十六章屏障(Barrier),废话不多说直接开始~ 目录 一、核心原理深度拆解 1. 屏障的同步机制 2. 关键参数 二…

算法探秘:和为K的子数组问题解析

算法探秘:和为K的子数组问题解析 一、引言 在算法的奇妙世界里,数组相关的问题总是层出不穷。“和为K的子数组”问题,看似简单,实则蕴含着丰富的算法思想和技巧。它要求我们在给定的整数数组中,找出和为特定值K的子数组个数。通过深入研究这个问题,我们不仅能提升对数组…

电力MOSFET的专用集成驱动电路IR2233

IR2233是IR2133/IR2233/IR2235 系列驱动芯片中的一种,是专为高电压、高速度的电力MOSFET和IGBT驱动而设计的。该系列驱动芯片内部集成了互相独立的三组板桥驱动电路,可对上下桥臂提供死区时间,特别适合于三相电源变换等方面的应用。其内部集成了独立的运算放大器可通过外部桥…

Qt 的原理及使用(1)——qt的背景及安装

1. Qt 背景介绍 1.1 什么是 Qt Qt 是⼀个 跨平台的 C 图形⽤⼾界⾯应⽤程序框架 。它为应⽤程序开发者提供了建⽴艺术级图形 界⾯所需的所有功能。它是完全⾯向对象的,很容易扩展。Qt 为开发者提供了⼀种基于组件的开发模 式,开发者可以通过简单的拖拽…

范式之殇-关系代数与参照完整性在 Web 后台的落寞

最近参加了一个PostgreSQL相关的茶会,感慨良多。原本话题是PostgreSQL 在 SELECT 场景中凭借其成熟的查询优化器、丰富的功能特性和灵活的执行策略,展现出显著优势。在窗口函数(Window Functions)、JOIN 优化、公共表表达式&#…

广西某建筑用花岗岩矿自动化监测

1. 项目简介 某矿业有限公司成立于2021年,是由某建筑材料有限公司与个人共同出资成立,矿区面积0.4069平方公里,可开采筑用花岗岩、建筑用砂岩。建筑用花岗岩、建筑用砂岩可利用资源量分别为6338.69万吨、303.39万吨,设计生产规模…

想更好应对突发网络与业务问题?需要一款“全流量”工具

目录 什么是“全流量”? 为什么“全流量”在突发问题中如此重要? 1. 抓住问题发生的“第一现场” 2. 绕开日志盲区 3. 精准应对安全威胁 实战场景下的“全流量”价值体现 实施“全流量”需要注意哪些点? 1. 数据量巨大,需…

C#里创建一个MaterialDesign3的导航条

本文里主要创建如下的窗口: 在这里就是实现左边的导航窗口的列表。 第一步先要定义下面的代码: <Window x:Class="MDIXWindow.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microso…

Oracle OCP认证考试考点详解083系列09

题记&#xff1a; 本系列主要讲解Oracle OCP认证考试考点&#xff08;题目&#xff09;&#xff0c;适用于19C/21C,跟着学OCP考试必过。 41. 第41题&#xff1a; 题目 解析及答案&#xff1a; 关于应用程序容器&#xff0c;以下哪三项是正确的&#xff1f; A) 它可以包含单个…

如何进行室内VR全景拍摄?

如何进行室内VR全景拍摄&#xff1f; 室内VR全景拍摄作为先进的视觉技术&#xff0c;能够为用户提供沉浸式的空间体验。本文介绍如何进行室内VR全景拍摄&#xff0c;并阐述众趣科技在这一领域的技术支持和服务优势。 室内VR全景拍摄基础 1. 室内VR全景拍摄概述 室内VR全景拍…

C# 综合示例 库存管理系统20 操作员管理(FormAdmin)

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的 图99A-35 操作员管理窗口设计 增加操作员或者重置密码&#xff0c;密码都设置为默认的“123456”&#xff0c;操作员可以登录系统后再修…

[JAVAEE]HTTP协议(2.0)

响应报文格式 响应报文格式由首行&#xff0c;响应头&#xff08;header&#xff09;&#xff0c;空行&#xff0c;正文&#xff08;body&#xff09; 组成 响应报文首行包括 1.版本号 如HTTP/1.1 2.状态码(如200) 描述了请求的结果 3.状态码描述(如OK) 首行——状态码…

VUE+ElementUI 使用el-input类型type=“number” 时,取消右边的上下箭头

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 在项目中有时候需要输入框的type“number”&#xff0c;这个时候&#xff0c;输入框的右边就会出现两个按钮&#xff0c;这两个按钮可以递增/递减&#xff0c;但是这样输入框看上去就不太美观&#x…

计算机视觉——MedSAM2医学影像一键实现3D与视频分割的高效解决方案

引言 在乡村医院的傍晚高峰时段&#xff0c;扫描室内传来阵阵低沉的嗡鸣声&#xff0c;仿佛一台老旧冰箱的运转声。一位疲惫的医生正全神贯注地检查着当天的最后一位患者——一位不幸从拖拉机上摔下的农民&#xff0c;此刻正呼吸急促。CT 机器飞速旋转&#xff0c;生成了超过一…

垃圾分类宣教小程序源码介绍

随着环保意识的提升&#xff0c;垃圾分类已成为我们生活中不可或缺的一部分。为了更好地宣传和教育大众关于垃圾分类的知识&#xff0c;一款基于ThinkPHP、FastAdmin和UniApp开发的垃圾分类宣教小程序应运而生。 该小程序源码结合了ThinkPHP的强大后台功能、FastAdmin的高效管…