使用FastAPI微服务在AWS EKS中构建上下文增强型AI问答系统

news2025/5/10 13:16:55

系统概述

本文介绍如何使用FastAPI在AWS Elastic Kubernetes Service (EKS)上构建一个由多个微服务组成的AI问答系统。该系统能够接收用户输入的提示(prompt),通过调用其他微服务从AWS ElastiCache on Redis和Amazon DynamoDB获取相关上下文,然后利用AWS Bedrock的Meta Llama 4模型和Azure OpenAI GPT-4 API生成最终答案返回给用户。
这个架构展示了如何利用FastAPI的轻量级特性构建微服务系统,结合AWS和Azure的AI能力,同时利用云原生技术实现可扩展性和安全性。系统设计考虑了高可用性和容错能力,通过多模型集成提高回答质量,并通过云服务集成实现快速上下文检索。

架构设计

整个系统架构如下:

用户 → [网关服务 - FastAPI] → [AI核心服务 - FastAPI]
                      ├──> Redis (AWS ElastiCache) ← 快速上下文
                      ├──> DynamoDB ← 结构化数据或备用数据
                      ├──> AWS Bedrock (Llama 4)
                      └──> Azure OpenAI (GPT-4)

微服务详解

1. 网关服务 (prompt-gateway-service)

职责

  • 接收用户通过REST API提交的提示(prompt)
  • 将提示转发给AI核心服务
  • 返回最终响应给用户

示例代码

# prompt_gateway_service/main.py
from fastapi import FastAPI, HTTPException
import httpx

app = FastAPI()
AI_CORE_SERVICE_URL = "http://ai-core-service:8000/process"

@app.post("/prompt")
async def receive_prompt(prompt: str):
    async with httpx.AsyncClient() as client:
        response = await client.post(AI_CORE_SERVICE_URL, json={"prompt": prompt})
        if response.status_code != 200:
            raise HTTPException(status_code=500, detail="AI服务失败")
        return response.json()

2. AI核心服务 (ai-core-service)

职责

  • 使用提示从Redis和DynamoDB获取相关上下文
  • 将上下文与原始提示结合
  • 同时调用Llama 4(Bedrock)和GPT-4(Azure)生成响应
  • 聚合两个模型的结果并返回最终答案

示例代码

# ai_core_service/main.py
from fastapi import FastAPI, Request
import boto3
import redis
import httpx
import os
import json

app = FastAPI()
redis_client = redis.Redis(host=os.getenv("REDIS_HOST"), port=6379, decode_responses=True)
dynamodb = boto3.resource("dynamodb", region_name="us-west-2")
table = dynamodb.Table("YourTableName")

@app.post("/process")
async def process_prompt(request: Request):
    data = await request.json()
    prompt = data["prompt"]
    
    # 从Redis获取上下文
    context = redis_client.get(prompt)
    if not context:
        # 回退到DynamoDB
        response = table.get_item(Key={"prompt": prompt})
        context = response.get("Item", {}).get("context", "")
    
    combined_prompt = f"Context: {context}\n\nPrompt: {prompt}"
    
    # 调用Llama 4 (Bedrock)
    bedrock = boto3.client("bedrock-runtime", region_name="us-west-2")
    llama_response = bedrock.invoke_model(
        body=json.dumps({"prompt": combined_prompt, "max_tokens": 300}),
        modelId="meta.llama4-70b-chat-v1"
    )
    llama_output = json.loads(llama_response['body'].read())['output']
    
    # 调用Azure OpenAI GPT-4
    azure_url = "https://<your-azure-openai-endpoint>/openai/deployments/<deployment>/chat/completions?api-version=2023-05-15"
    headers = {"api-key": os.getenv("AZURE_API_KEY")}
    payload = {
        "messages": [{"role": "user", "content": combined_prompt}],
        "model": "gpt-4"
    }
    async with httpx.AsyncClient() as client:
        azure_response = await client.post(azure_url, headers=headers, json=payload)
        gpt_output = azure_response.json()['choices'][0]['message']['content']
    
    return {"llama": llama_output, "gpt4": gpt_output}

AWS EKS部署

部署步骤

  1. 为两个服务构建Docker容器
  2. 推送到Amazon ECR
  3. 编写Kubernetes清单文件:
    • 部署配置
    • 服务配置
  4. 设置Redis (通过ElastiCache)和DynamoDB
  5. 使用Kubernetes Secrets存储凭证/API密钥
  6. 通过AWS ALB/Ingress Controller暴露网关API

安全措施

  1. 使用IAM角色服务账户(IRSA)允许访问DynamoDB和Bedrock
  2. 将API密钥(Azure OpenAI)存储在Kubernetes Secrets中
  3. 使用mTLS或网络策略保护服务间通信

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2372327.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PMIC电源管理模块的PCB设计

目录 PMU模块简介 PMU的PCB设计 PMU模块简介 PMIC&#xff08;电源管理集成电路&#xff09;是现代电子设备的核心模块&#xff0c;负责高效协调多路电源的转换、分配与监控。它通过集成DC-DC降压/升压、LDO线性稳压、电池充电管理、功耗状态切换等功能&#xff0c;替代传统分…

华为云Flexus+DeepSeek征文|DeepSeek-V3商用服务开通教程

目录 DeepSeek-V3/R1商用服务开通使用感受 DeepSeek-V3/R1商用服务开通 1、首先需要访问ModelArts Studio_MaaS_大模型即服务_华为云 2、在网站右上角登陆自己的华为云账号&#xff0c;如果没有华为云账号的话&#xff0c;则需要自己先注册一个。 3、接着点击ModelArts Stu…

Qt—鼠标移动事件的趣味小程序:会移动的按钮

1.项目目标 本次根据Qt的鼠标移动事件实现一个趣味小程序&#xff1a;当鼠标移动到按钮时&#xff0c;按钮就会随机出现在置&#xff0c;以至于根本点击不到按钮。​​​​​ 2.项目步骤 首先现在ui界面设计控件(也可以用代码的方式创建&#xff0c;就不多说了) 第一个按钮不需…

鞋样设计软件

Sxy 64鞋样设计软件是一款专业级鞋类设计工具 专为鞋业设计师与制鞋企业开发 该软件提供全面的鞋样设计功能 包括二维开版 三维建模 放码排料等核心模块 支持从草图构思到成品输出的完整设计流程 内置丰富的鞋型数据库与部件库 可快速生成各种鞋款模板 软件采用智能放码技术 精…

LeRobot 项目部署运行逻辑(六)——visualize_dataset_html.py/visualize_dataset.py

可视化脚本包括了两个方法&#xff1a;远程下载 huggingface 上的数据集和使用本地数据集 脚本主要使用两个&#xff1a; 目前来说&#xff0c;ACT 采集训练用的是统一时间长度的数据集&#xff0c;此外&#xff0c;这两个脚本最大的问题在于不能裁剪&#xff0c;这也是比较好…

Windows Server 2025开启GPU分区(GPU-P)部署DoraCloud云桌面

本文描述在ShareStation工作站虚拟化方案的部署过程。 将服务器上部署 Windows Server、DoraCloud&#xff0c;并创建带有vGPU的虚拟桌面。 GPU分区技术介绍 GPU-P&#xff08;GPU Partitioning&#xff09; 是微软在 Windows 虚拟化平台&#xff08;如 Hyper-V&#xff09;中…

TCP套接字通信核心要点

TCP套接字通信核心要点 通信模型架构 客户端-服务端模型 CS架构&#xff1a;客户端发起请求&#xff0c;服务端响应和处理请求双向通道&#xff1a;建立连接后实现全双工通信 服务端搭建流程 核心步骤 创建套接字 int server socket(AF_INET, SOCK_STREAM, 0); 参数说明&am…

【C】初阶数据结构15 -- 计数排序与稳定性分析

本文主要讲解七大排序算法之外的另一种排序算法 -- 计数排序 目录 1 计数排序 1&#xff09; 算法思想 2&#xff09; 代码 3&#xff09; 时间复杂度与空间复杂度分析 &#xff08;1&#xff09; 时间复杂度 &#xff08;2&#xff09; 空间复杂度 4&#xff09; 计…

高性能Python Web 框架--FastAPI 学习「基础 → 进阶 → 生产级」

以下是针对 FastAPI 的保姆级教程&#xff0c;包含核心概念、完整案例和关键注意事项&#xff0c;采用「基础 → 进阶 → 生产级」的三阶段教学法&#xff1a; 一、FastAPI介绍 FastAPI 是一个现代化的、高性能的 Python Web 框架&#xff0c;专门用于构建 APIs&#xff08;应…

Qt QML自定义LIstView

QML ListView组合拳做列表&#xff0c;代码不可直接复制使用&#xff0c;需要小改 先上图看效果 样式1 样式2 样式3 原理&#xff1a;操作&#xff1a;技术点:代码片段&#xff1a; 先上图看效果 样式1 三个表格组合成要给&#xff0c;上下滚动时&#xff0c;三个同时滚动&am…

C++进阶--红黑树的实现

文章目录 红黑树的实现红黑树的概念红黑树的规则红黑树的效率 红黑树的实现红黑树的结构红黑树的插入变色单旋&#xff08;变色&#xff09;双旋&#xff08;变色&#xff09; 红黑树的查找红黑树的验证 总结&#xff1a;结语 很高兴和大家见面&#xff0c;给生活加点impetus&a…

WPF之值转换器

文章目录 目录什么是值转换器IValueConverter接口Convert方法ConvertBack方法 创建和使用值转换器定义转换器类在XAML中使用转换器转换器参数&#xff08;ConverterParameter&#xff09; 常用转换器实现布尔值转可见性&#xff08;BoolToVisibilityConverter&#xff09;数值转…

qml中的TextArea使用QSyntaxHighlighter显示高亮语法

效果图&#xff0c;左侧显示行号&#xff0c;右侧用TextArea显示文本内容&#xff0c;并且语法高亮。 2025年5月8号更新 1、多行文本注释 多行文本注释跟普通的高亮规则代码不太一样&#xff0c;代码需要修改&#xff0c;这里以JavaScript举例。 先制定多行文本注释规则&…

Transformer编码器+SHAP分析,模型可解释创新表达!

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基本介绍 基于SHAP分析的特征选择和贡献度计算&#xff0c;Matlab2023b代码实现&#xff1b;基于MATLAB的SHAP可解释Transformer编码器回归模型&#xff0c;敏感性分析方法。 详细介绍 引言 在正向渗透&#xff08…

[特殊字符]适合母亲节的SVG模版[特殊字符]

宝藏模版 往期推荐&#xff08;点击阅读&#xff09;&#xff1a; 趣味效果&#xff5c;高大上&#xff5c;可爱风&#xff5c;年终总结I&#xff5c;年终总结II&#xff5c;循环特效&#xff5c;情人节I&#xff5c;情人节II&#xff5c;情人节IIII&#xff5c;妇女节I&…

浅蓝色调风格人像自拍Lr调色预设,手机滤镜PS+Lightroom预设下载!

调色教程 浅蓝色调风格人像自拍 Lr 调色是利用 Adobe Lightroom 软件针对人像自拍照进行后期处理的一种调色方式。它通过对照片的色彩、对比度、亮度等参数进行精细调整&#xff0c;将画面的主色调打造为清新、柔和的浅蓝色系&#xff0c;赋予人像自拍独特的清新、文艺风格&…

isp流程介绍(yuv格式阶段)

一、前言介绍 前面两章里面&#xff0c;已经分别讲解了在Raw和Rgb域里面&#xff0c;ISP的相关算法流程&#xff0c;从前面文章里面可以看到&#xff0c;在Raw和Rgb域里面&#xff0c;很多ISP算法操作&#xff0c;更像是属于sensor矫正或者说sensor标定操作。本质上来说&#x…

数巅智能携手北京昇腾创新中心深耕行业大模型应用

当前&#xff0c;AI技术正在加速向各行业深度渗透,成为驱动产业转型和社会经济发展的重要引擎。构建开放协作的AI应用生态体系、推动技术和应用深度融合&#xff0c;已成为行业发展的重要趋势。 近日&#xff0c;数巅智能与北京昇腾人工智能计算中心&#xff08;北京昇腾创新中…

【LangChain高级系列】LangGraph第一课

前言 我们今天直接通过一个langgraph的基础案例&#xff0c;来深入探索langgraph的核心概念和工作原理。 基本认识 LangGraph是一个用于构建具有LLMs的有状态、多角色应用程序的库&#xff0c;用于创建代理和多代理工作流。与其他LLM框架相比&#xff0c;它提供了以下核心优…

常见降维算法分析

一、常见的降维算法 LDA线性判别PCA主成分分析t-sne降维 二、降维算法原理 2.1 LDA 线性判别 原理 &#xff1a;LDA&#xff08;Linear Discriminant Analysis&#xff09;线性判别分析是一种有监督的降维方法。它的目标是找到一个投影方向&#xff0c;使得不同类别的数据在…