Pandas比MySQL快?

news2025/5/9 13:48:44

知乎上有人问,处理百万级数据,Python列表、Pandas、Mysql哪个更快?

Pands是Python中非常流行的数据处理库,拥有大量用户,所以拿它和Mysql对比也是情理之中。

实测来看,MySQL > Pandas > Python列表,而且MySQl远快于后两个,几乎是碾压。

这主要是数据库语言和编程语言的差异,其实是不同层面的东西。


Python列表和Pandas是基于内存操作的,百万级数据内存占用高,可能会溢出。

但Pandas算法更优,所以快于Python列表。

Pandas主要基于numpy向量化计算,而且像排序、聚合等算法优化的比较好,一般会比Python列表更快3倍以上。

如果内存占用大,Pandas可以分块读取,所以对于大数据比Python列表有更好的处理能力。

MySQL无疑是最快的,这一点相信写过SQL的人能感受到。

它的数据存储在磁盘,得益于索引和查询优化,而且有分页查询、多线程等,比Pandas和Python列表快很多。

举几个列子,分别是聚合、排序、复杂查询操作。

1、聚合操作(求和)

Python列表(分钟级)需要对嵌套列表进行if遍历,再求和,这非常慢。

Pandas(十秒级)可以用向量化计算来实现,比如df.groupby().sum()

Mysql(秒级)结合索引优化和聚合函数,使用select sum(…) from … group by…

2、排序操作

Python列表(分钟级)使用内置sort()和sorted()方法,时间复杂度高

Pandas(十秒级)使用pandassort_values方法实现,调用C底层算法,比较快

Mysql(秒级)通过索引直接读取B+树,非常快

3、复杂查询(多表+多条件)

Python列表(分钟级)加载全部数据到内存,且算法复杂

Pandas(十秒级)加载全部数据到内存,可以算法优化,但也不快

Mysql(秒级)通过索引和join方法优化,非常快

所以结论如下:

  • Python列表:适合万级以下小规模数据的处理
  • Pandas:适合百万左右中等数据规模的处理
  • Mysql:适合千万以上大规模数据的处理

对了,其实你在Python中可以使用mysql的,有一个专门的sdk接口-pymysql,可以支持python连接mysql,不管是查询、建表、插入数据等都可以实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2371511.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

简易的考试系统设计(Web实验)

简易的考试系统设计(Web实验) 1.实验内容与设计思想(一)实验需求(二)设计思路 2.代码展示3.实验小结 1.实验内容与设计思想 (一)实验需求 1.编写两个页面程序,一个HTML…

基于Kubernetes的Apache Pulsar云原生架构解析与集群部署指南(上)

#作者:闫乾苓 文章目录 概念和架构概述主要特点消息传递核心概念Pulsar 的消息模型Pulsar 的消息存储与分发Pulsar 的高级特性架构BrokerBookKeeperZooKeeper 概念和架构 概述 Pulsar 是一个多租户、高性能的服务器到服务器消息传递解决方案。Pulsar 最初由雅虎开…

使用JAVA对接Deepseek API实现首次访问和提问

一、标题 参考:https://www.cnblogs.com/saoge/p/18866776 使用JAVA对接Deepseek API实现首次访问和 提问:我有50万能做什么小本生意,举例3个! 二、代码 import java.io.BufferedReader; import java.io.InputStreamReader; import java.…

【C语言】文件操作(续)

目录 复习: 一⽂件的顺序读写 例子: 前言: 在上篇文章中介绍了文件的类型,文件指针,流,操作的函数。 在本篇文章继续为大家带来文件细节分享,如 顺序读写等等。 复习: fopen是…

基于CBOW模型的词向量训练实战:从原理到PyTorch实现

基于CBOW模型的词向量训练实战:从原理到PyTorch实现 在自然语言处理(NLP)领域,词向量是将单词映射为计算机可处理的数值向量的重要方式。通过词向量,单词之间的语义关系能够以数学形式表达,为后续的文本分…

mac连接lniux服务器教学笔记

从你的检查结果看,容器内已经安装了 XFCE 桌面环境(xfce.desktop 和 xubuntu.desktop 的存在说明桌面环境已存在)。以下是针对 Docker 容器环境的远程桌面配置方案: 一、容器内快速配置远程桌面(XFCE VNC)…

阀门产业发展方向报告(石油化工阀门应用技术交流大会)

本文大部分内容来自中国通用机械工业协会副会长张宗列在“2024全国石油化工阀门应用技术交流大会”上发表的报告。 一、国外阀门产业发展 从全球阀门市场分布看,亚洲是最大的工业阀门市场,美洲是全球第二大工业阀门市场,欧洲位列第三。 从国…

Windows Server 2025 安装AMD显卡驱动

运行显卡驱动安装程序,会提示出问题。但是此时资源已经解压 来到驱动路径 C:\AMD\AMD-Software-Installer\Packages\Drivers\Display\WT6A_INF 打开配置文件,把这两行替换掉 %ATI% ATI.Mfg, NTamd64.10.0...16299, NTamd64.10.0, NTamd64.6.0, NTamd64.…

用 CodyBuddy 帮我写自动化运维脚本

我正在参加CodeBuddy「首席试玩官」内容创作大赛,本文所使用的 CodeBuddy 免费下载链接:腾讯云代码助手 CodeBuddy - AI 时代的智能编程伙伴”。 #CodeBuddy首席试玩官 背景 我个人是非常喜欢 Jenkins 自动化部署工具的,之前都是手写 Jenki…

USB集线器芯片革新之战:CH334U如何以工业级性能重新定义HUB控制器

一、当工业智能化遭遇接口瓶颈 在智能制造与边缘计算蓬勃发展的今天,工程师们正面临一个看似微小却至关重要的挑战——如何让USB集线器在极端工况下保持稳定?传统HUB控制器在-20℃以下频繁出现信号失真,产线突然断电导致的静电击穿更是让设备…

基于 Spring Boot 瑞吉外卖系统开发(十)

基于 Spring Boot 瑞吉外卖系统开发(十) 修改菜品 修改菜品是在原有的菜品信息的上对菜品信息进行更新,对此修改菜品信息之前需要将原有的菜品信息在修改界面进行展示,然后再对菜品信息进行修改。 修改菜品分为回显菜品信息和更…

C++ 与 Lua 联合编程

在软件开发的广阔天地里,不同编程语言各有所长。C 以其卓越的性能、强大的功能和对硬件的直接操控能力,在系统开发、游戏引擎、服务器等底层领域占据重要地位,但c编写的程序需要编译,这往往是一个耗时操作,特别对于大型…

Linux系统(OpenEuler22.03-LTS)部署FastGPT

在 openEuler 22.03 LTS 系统上通过 Docker Compose 安装 FastGPT 的步骤如下: 官方参考文档:https://doc.fastgpt.cn/docs/development/docker/ 1. 安装 Docker 和 Docker Compose 可以参考我之前离线安装Docker的文章:openEuler 22.03 LT…

Kubernetes控制平面组件:Controller Manager 之 内置Controller详解

云原生学习路线导航页(持续更新中) kubernetes学习系列快捷链接 Kubernetes架构原则和对象设计(一)Kubernetes架构原则和对象设计(二)Kubernetes架构原则和对象设计(三)Kubernetes控…

结合Splash与Scrapy:高效爬取动态JavaScript网站

在当今的Web开发中,JavaScript的广泛应用使得许多网站的内容无法通过传统的请求-响应模式直接获取。为了解决这个问题,Scrapy开发者经常需要集成像Splash这样的JavaScript渲染引擎。本文将详细介绍Splash JS引擎的工作原理,并探讨如何将其与S…

用于构建安全AI代理的开源防护系统

大家读完觉得有帮助记得及时关注!!! 大型语言模型(LLMs)已经从简单的聊天机器人演变为能够执行复杂任务的自主代理,例如编辑生产代码、编排工作流程以及基于不受信任的输入(如网页和电子邮件&am…

克里金模型+多目标优化+多属性决策!Kriging+NSGAII+熵权TOPSIS!

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 克里金模型多目标优化多属性决策!KrigingNSGAII熵权TOPSIS!!matlab2023b语言运行! 1.克里金模型(Kriging Model)是一种基于空间统计学的插值方法…

LLM 论文精读(三)Demystifying Long Chain-of-Thought Reasoning in LLMs

这是一篇2025年发表在arxiv中的LLM领域论文,主要描述了长思维链 Long Chain-of-Thought 对LLM的影响,以及其可能的生成机制。通过大量的消融实验证明了以下几点: 与shot CoT 相比,long CoT 的 SFT 可以扩展到更高的性能上限&…

【Prompt工程—文生图】案例大全

目录 一、人物绘图 二、卡通头像 三、风景图 四、logo设计图 五、动物形象图 六、室内设计图 七、动漫风格 八、二次元图 九、日常场景图 十、古风神化图 十一、游戏场景图 十二、电影大片质感 本文主要介绍了12种不同类型的文生图技巧,通过加入不同的图像…

rust程序静态编译的两种方法总结

1. 概述 经过我的探索,总结了两种rust程序静态编译的方法,理论上两种方法都适用于windows、mac os和linux(mac os未验证),实测方法一性能比方法二好,现总结如下,希望能够帮到你. 2.方法一 2.1 添加配置文件 在项目的同级文件夹下新…