Nacos简介—2.Nacos的原理简介

news2025/7/11 8:07:35

大纲

1.Nacos集群模式的数据写入存储与读取问题

2.基于Distro协议在启动后的运行规则

3.基于Distro协议在处理服务实例注册时的写路由

4.由于写路由造成的数据分片以及随机读问题

5.写路由 + 数据分区 + 读路由的CP方案分析

6.基于Distro协议的定时同步机制

7.基于Distro协议的心跳校验下的数据同步补偿机制

8.基于Raft协议实现的弱CP模式

9.Nacos集群模式下的lookup寻址机制

1.Nacos集群模式的数据写入存储与读取问题

使用Nacos进行服务注册时,需要解决如下问题:

一.应该找集群里的哪个节点来发起服务注册?

二.服务实例数据应该存储在集群的哪个节点?

三.应该找集群里的哪个节点来发起服务发现?

2.基于Distro协议在启动后的运行规则

(1)Nacos集群启动后会按如下规则运行

(2)Distro协议 + 定时数据同步与AP + 心跳检验与网络分区

(1)Nacos集群启动后会按如下规则运行

一.Nacos集群的每个节点都可以处理写请求

Nacos集群节点收到写请求后:首先根据要注册的服务实例的IP:端口 + 路由算法,计算出所属集群节点。然后把服务实例注册请求转发到负责该服务实例数据的集群节点中。接着负责该服务实例数据的集群节点就会解析请求,把数据存储到内存里。同时会定期执行同步任务,把本节点负责的数据同步到其他节点。最终每个节点都会存储全量的服务实例数据。

二.新加入Nacos集群的节点会拉取全量数据

新加入Nacos集群的节点会轮询Nacos集群的所有节点,然后发送请求出去拉取各节点的数据,所以Nacos集群的每个节点上都会有所有已注册的服务实例的数据。

三.每个节点都会定期发送心跳给其他节点

Nacos集群的节点通过心跳请求进行数据校验,主要是交换数据的校验值。如果发现其他节点上的数据与自己的不一致,就会全量拉取数据进行补齐。

四.Nacos集群的每个节点都可以处理读请求

因为每个节点都有全量数据,所以每个节点都可以处理读请求。

(2)Distro协议 + 定时数据同步与AP + 心跳检验与网络分区

Distro协议兼顾了CAP中的AP。在这个协议下,所有节点通过定期数据同步 + 心跳校验实现数据最终一致。这个协议能让每个节点都有全量数据。

如果出现某节点宕机,不影响集群可用性。如果出现网络分区,同样不影响集群可用性。因为不同的网络分区只会读写分区中的Nacos节点,此时只是没办法同步数据而已。虽然数据会不一致,但一旦分区恢复后,心跳校验机制运作起来,数据会自动补齐。

3.基于Distro协议在处理服务实例注册时的写路由

首先,服务实例会随机选择Nacos集群中的一个节点发起注册请求。

然后,Nacos集群节点收到写请求后:会根据要注册的服务实例的IP:端口 + 路由算法,计算出所属的集群节点。

接着,把服务实例注册请求转发到负责该服务实例数据的集群节点中。负责该服务实例数据的节点会解析请求,缓存服务实例数据到内存中。

4.由于写路由造成的数据分片以及随机读问题

由于Nacos集群节点收到写请求后:会根据要注册的服务实例的IP:端口 + 路由算法,计算出所属的集群节点。所以会导致数据分片,即每个节点仅负责管理一部分的服务实例数据。

服务实例进行服务发现时,只能随机选择一个Nacos节点来读取数据。对Nacos集群节点进行随机读的时候,由于每个节点只负责处理部分数据,所以可能出现读取不到刚向集群注册的数据的随机读问题。

5.写路由 + 数据分区 + 读路由的CP方案分析

在数据分区 + 随机读的情况下,此时为了读取到数据,有两种解决方案。

方案一:让随机选择的节点重新进行读路由

方案二:让随机选择的节点也拥有全部数据

如果采用方案一,也就是写路由 + 数据分片 + 读路由的架构设计。那么读写某个服务实例的数据,只能由Nacos集群中的其中一个节点处理。如果节点宕机,那么对应的该服务实例数据就不可用。虽然该节点的数据不可用,但也是对所有用户都不可用,视图是一致的。视图是一致的,说明要么都能读到数据,要么都读不到数据。所以这种方案会存在可用性的问题,但优点是数据是强一致的。也就是牺牲了CAP中的A,没有了可用性,但保证了CP。

Nacos的Distro协议则使用了方案二。某个节点宕机后,该节点的数据不会全部不可用,可能会丢失部分数据。也就是牺牲了CAP中的C,不能确保强一致性,但保证了AP。加上Distro协议的同步机制,可以让各节点的数据实现最终一致性。

6.基于Distro协议的定时同步机制

Nacos集群中的每个节点,虽然通过写路由只写入由自己处理的数据,但同时也会定期执行同步任务,把本节点负责的数据同步到其他节点,最终每个节点都会存储全量的集群数据。

同步机制的存在保证了各节点的数据最终是一致的。

7.基于Distro协议的心跳校验下的数据同步补偿机制

Nacos集群的节点通过心跳请求进行数据校验,主要是交换数据的校验值。如果发现其他节点上的数据与自己的不一致,就会全量拉取数据进行补齐。

当出现网络分区时,两分区间的节点无法通信,此时自然就无法定时同步。但当分区恢复后,节点之间通过心跳校验机制,数据可以快速自动补齐。

8.基于Raft协议实现的弱CP模式

Nacos集群节点在启动时会选举出一个Leader节点,由Leader节点负责数据的写入,并将数据同步给其他节点。Leader节点成功写入数据的判断依据是,过半节点都成功同步数据了。

9.Nacos集群模式下的lookup寻址机制

(1)单机寻址

(2)文件寻址

(3)地址服务器寻址

寻址就是Nacos各节点启动时如何找到其他节点。

(1)单机寻址

Nacos通过"-m standalone"模式来启动时,会读取自己本机的IP:端口,然后构造对象放入到ServerMemberManager,它是专门负责管理所有节点信息的组件。

(2)文件寻址

cluster.conf里会写入各个节点地址,节点启动时会读取这个文件的内容。同时节点会针对这个文件施加监听器,如果发现文件有变动,会进行重新读取。但是需要手工维护每个节点的cluster.conf文件,比较适合常规的、三节点、小规模的生产集群部署。

(3)地址服务器寻址

如果Nacos需要进行大规模的集群部署,一般会采用这个方案。也就是使用一个Web服务器来维护一份cluster.conf,然后所有的Nacos都定时请求这个Web服务器获取最新的地址列表。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2343234.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TCP协议理解

文章目录 TCP协议理解理论基础TCP首部结构图示字段逐项解析 TCP是面向连接(Connection-Oriented)面向连接的核心表现TCP 面向连接的核心特性TCP 与UDP对比 TCP是一个可靠的(reliable)序号与确认机制(Sequencing & Acknowledgment&#xf…

用 LangChain 手搓 RAG 系统:从原理到实战

一、RAG 系统简介 在当今信息爆炸的时代,如何高效地从海量数据中获取有价值的信息并生成准确、自然的回答,成为了人工智能领域的重要课题。检索增强生成(Retrieval-Augmented Generation,RAG)系统应运而生,…

联合体和枚举类型

1.联合体类型 1.1:联合体类型变量的创建 与结构体类型一样,联合体类型 (关键字:union) 也是由⼀个或者多个成员变量构成,这些成员变量既可以是不同的类型,也可以是相同的类型。但是编译器只为最⼤的成员变量分配⾜够的内存空间。联合体的特…

C语言指针5

1.void*概述 void称为无类型,void*称为无类型指针,void不可以单独定义变量,却可以定义无类型的指针,而且所定义的指针称为泛型指针,所谓泛型指针,其含义是void*类型的指针可以接收一切类型变量的地址 struc…

文档构建:Sphinx全面使用指南 — 强化篇

文档构建:Sphinx全面使用指南 — 强化篇 Sphinx 是一款强大的文档生成工具,使用 reStructuredText 作为标记语言,通过扩展兼容 Markdown,支持 HTML、PDF、EPUB 等多种输出格式。它具备自动索引、代码高亮、跨语言支持等功能&#…

深度理解C语言函数之strlen()的模拟实现

文章目录 前言一、strlen的模拟实现二、模拟实现代码及思路2.1 计数法2.2 指针相减法三、递归计数法 总结 前言 我写这篇文章的目的主要是帮助理解C语言中重要函数的用法,后面也会总结C相关的函数的模拟实现,这里的算法不一定是最好的,因为只…

0基础 | Proteus仿真 | 51单片机 | 继电器

继电器---RELAY 本次选择一款5v一路继电器进行讲解 信号输入 IN1输入高电平,三极管导通,LED1点亮,电磁铁12接通吸引3向下与4接通,J1A的12接通 IN1输入低电平,则J1A的23接通 产品引脚定义及功能 序号 引脚符号 引脚…

Python解析地址中省市区街道

Python解析地址中省市区街道 1、效果 输入:海珠区沙园街道西基村 输出: 2、导入库 pip install jionlp3、示例代码 import jionlp as jiotext 海珠区沙园街道西基村 res jio.parse_location(text, town_villageTrue) print(res)

在vscode终端中运行npm命令报错

解决方案 这个错误信息表明,你的系统(可能是 Windows)阻止了 PowerShell 执行脚本,这是由于 PowerShell 的执行策略导致的。PowerShell 的执行策略控制着在系统上运行哪些 PowerShell 脚本。默认情况下,Windows 可能…

提升变电站运维效率:安科瑞无线测温系统创新应用

一、引言 变电站作为电力系统的关键枢纽,承担着变换电压、分配电能以及控制电力流向等重要任务。在变电站的运行过程中,电气设备的接点温度监测至关重要。过热问题可能由多种因素引发,如电阻过大、接头质量欠佳、衔接不紧密、物理老化等&…

vue3 使用 vite 管理多个项目,实现各子项目独立运行,独立打包

场景: 之前写过一篇 vite vue2 的配置,但是现在项目使用 vue3 较多,再更新一下 vue脚手架初始化之后的项目,每个项目都是独立的,导致项目多了之后,node依赖包过多,占用内存较多。想实现的效果…

WebRTC服务器Coturn服务器用户管理和安全性

1、概述 Coturn服务器对用户管理和安全方面也做了很多的措施,以下会介绍到用户方面的设置 1.1、相关术语 1.1.1 realm 在 coturn 服务器中,域(realm)是一种逻辑上的分组概念,用于对不同的用户群体、应用或者服务进行区…

如何使用极狐GitLab 的外部状态检查功能?

极狐GitLab 是 GitLab 在中国的发行版,关于中文参考文档和资料有: 极狐GitLab 中文文档极狐GitLab 中文论坛极狐GitLab 官网 外部状态检查 (ULTIMATE ALL) pending 状态引入于极狐GitLab 16.5 pending 状态检查的超时时间为两分钟引入于极狐GitLab 16…

【Langchain】RAG 优化:提高语义完整性、向量相关性、召回率--从字符分割到语义分块 (SemanticChunker)

RAG 优化:提高语义完整性、向量相关性、召回率–从字符分割到语义分块 (SemanticChunker) 背景:提升 RAG 检索质量 在构建基于知识库的问答系统(RAG)时,如何有效地将原始文档分割成合适的文本块(Chunks&a…

深入剖析扣子智能体的工作流与实战案例

前面我们已经初步带大家体验过扣子工作流,工作流程是 Coze 最为强大的功能之一,它如同扣子中蕴含的奇妙魔法工具,赋予我们的机器人处理极其复杂问题逻辑的能力。 这篇文章会带你更加深入地去理解并运用工作流解决实际问题 目录 一、工作流…

基于K8s日志审计实现攻击行为检测

K8s日志审计以一种事件溯源的方式完整记录了所有API Server的交互请求。当K8s集群遭受入侵时,安全管理员可以通过审计日志进行攻击溯源,通过分析攻击痕迹,找到攻击者的入侵行为并还原攻击者的攻击路径,修复安全问题。 在本篇文章中…

【Linux网络编程】应用层协议HTTP(实现一个简单的http服务)

目录 前言 一,HTTP协议 1,认识URL 2,urlencode和urldecode 3,HTTP协议请求与响应格式 二,myhttp服务器端代码的编写 HTTP请求报文示例 HTTP应答报文示例 代码编写 网络通信模块 处理请求和发送应答模块 结…

短视频+直播商城系统源码全解析:音视频流、商品组件逻辑剖析

时下,无论是依托私域流量运营的品牌方,还是追求用户粘性与转化率的内容创作者,搭建一套完整的短视频直播商城系统源码,已成为提升用户体验、增加商业变现能力的关键。本文将围绕三大核心模块——音视频流技术架构、商品组件设计、…

STM32定时器---基本定时器

目录 一、定时器的概述 二、时基单元 三、基本定时器的的时序 (1)预分频器时序 (2)计数器时序 四、基本定时器的使用 一、定时器的概述 在没有定时器的时候,我们想要延时往往都是写一个Delay函数,里面…

大模型微调 - transformer架构

什么是Transformer Transformer 架构是由 Vaswani 等人在 2017 年提出的一种深度学习模型架构,首次发表于论文《Attention is All You Need》中 Transformer 的结构 Transformer 编码器(Encoder) 解码器(Decoder) …