spring-batch批处理框架(2)

news2025/5/11 0:02:52

文章目录

  • 八、作业控制
    • 8.1 作业启动
      • 8.1.1 SpringBoot 启动
      • 8.1.2 Spring 单元测试启动
      • 8.1.3 RESTful API 启动
    • 8.2 作业停止
        • 方案1:Step 步骤监听器方式
        • 方案2:StepExecution停止标记
    • 8.3 作业重启
      • 8.3.1 禁止重启
      • 8.3.2 限制重启次数
      • 8.3.3 无限重启
  • 九、ItemReader
    • 9.1 读平面文件
        • 9.1.1 方式1:delimited--字符串截取
        • 9.1.2 方式2:FieldSetMapper--字段映射
    • 9.2 读JSON文件
    • 9.3 读数据库
      • 9.3.1 基于游标方式
      • 9.3.2 基于分页方式
    • 9.4 读取异常
  • 十、ItemProcessor
    • 10.1 默认ItemProcessor
      • 10.1.1 ValidatingItemProcessor:校验处理器
      • 10.1.2 ItemProcessorAdapter:适配器处理器
      • 10.1.3 ScriptItemProcessor:脚本处理器
      • 10.1.4 CompositeItemProcessor:组合处理器
    • 10.2 自定义ItemProcessor处理器
  • 十一、ItemWriter
    • 11.1 输出平面文件
    • 11.2 输出Json文件
    • 11.3 输出数据库
    • 11.4 输出多终端
  • 十二、Spring Batch 高级
    • 12.1 多线程步骤
    • 12.2 并行步骤
    • 12.3 分区步骤
  • 十三、综合案例
    • 13.1 案例需求
    • 13.2 分析
    • 13.3 项目准备
    • 13.4 需求一
    • 13.5 需求二
    • 13.6 需求三

spring-batch批处理框架(1)
spring-batch批处理框架(2)

八、作业控制

作业的运行指的是对作业的控制,包括作业启动,作业停止,作业异常处理,作业重启处理等。

8.1 作业启动

8.1.1 SpringBoot 启动

目前为止,上面所有的案例都是使用Spring Boot 原生功能来启动作业的,其核心类:JobLauncherApplicationRunner , Spring Boot启动之后,马上调用该类run方法,然后将操作委托给SimpleJobLauncher类run方法执行。默认情况下,Spring Boot一启动马上执行作业。

如果不想Spring Boot启动就执行,可以通过配置进行修改

spring:
  batch:
    job:
      enabled: false   #false表示不启动

(BatchAutoConfiguration中使用了条件注解,指定了JobLauncherApplicationRunner的生效条件为spring.batch.job.enabled=true,如果不指定,默认为true)

8.1.2 Spring 单元测试启动

开发中如果想简单验证批处理逻辑是否能运行,可以使用单元测试方式启动作业

先引入spring-test测试依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-test</artifactId>
</dependency>

建立启动类

@SpringBootApplication
@EnableBatchProcessing
public class App {
    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}

建立测试类

@SpringBootTest(classes = App.class)
public class StartJobTest {
    
    //job调度器
    @Autowired
    private JobLauncher jobLauncher;
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }
    
    public Step  step1(){
        TaskletStep step1 = stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
        return step1;
    }
    
    //定义作业
    public Job job(){
        Job job = jobBuilderFactory.get("start-test-job")
                .start(step1())
                .build();
        return job;
    }

    @Test
    public void testStart() throws Exception{
        //job作业启动
        //参数1:作业实例,参数2:作业运行携带参数
        jobLauncher.run(job(), new JobParameters());
    }
}

跟之前的SpringBoot启动区别在于多了JobLauncher 对象的获取,再由这个对象调用run方法启动。

8.1.3 RESTful API 启动

如果批处理不是SpringBoot启动就启动,而是通过web请求控制,那该怎么办呢?不难,引入web环境即可

1>首先限制,不随SpringBoot启动而启动

spring:
  batch:
    job:
      enabled: false   #false表示不启动

2>引入web 环境

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>

3>编写启动类

@SpringBootApplication
public class App {
    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}

4>编写配置类

@EnableBatchProcessing
@Configuration
public class BatchConfig {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.out.println("Hello SpringBatch....");
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Step step1(){
        TaskletStep step1 = stepBuilderFactory.get("step1")
                .tasklet(tasklet())
                .build();
        return step1;
    }
    
    //定义作业
    @Bean
    public Job job(){
        Job job = jobBuilderFactory.get("hello-restful-job")
                .start(step1())
                .build();
        return job;
    }
}

5>编写Controller类

@RestController
public class HelloController {
    
    @Autowired
    private JobLauncher jobLauncher;
    
    @Autowired
    private Job job;
    
    @GetMapping("/job/start")
    public ExitStatus start() throws Exception {
        
         //启动job作业
        JobExecution jobExecution = jobLauncher.run(job, new JobParameters());
        
        return jobExecution.getExitStatus();
    }
}

6>测试

(第一次执行和第二次执行的结果如下图所示)

image-20250415220526738

注意:如果需要接收参数

image-20230112202915961

1>作业使用run.id自增

//构造一个job对象
@Bean
public Job job(){
    return jobBuilderFactory.get("hello-restful-job")
        .start(step1())
        .incrementer(new RunIdIncrementer())
        .build();
}

2>改动HelloController接口方法

@RestController
public class HelloController {
    
    @Autowired
    private JobLauncher jobLauncher;
    
    @Autowired
    private Job job;
    
    @GetMapping("/job/start")
    public ExitStatus startJob(String name) throws Exception {
        
        //启动job作业
        JobParameters jobParameters = new JobParametersBuilder()
                .addString("name", name)
                .toJobParameters();
        
        JobExecution jobExecution = jobLauncher.run(job, jobParameters);
        
        return jobExecution.getExitStatus();
    }
}

但是这样,当使用同一参数,第二次调用该接口时,会报错,因为该job又使用了同一参数所标识的jobInstance已经执行成功过了。

org.springframework.batch.core.repository.JobInstanceAlreadyCompleteException: A job instance already exists and is complete for parameters={name=null}.  If you want to run this job again, change the parameters.

可如下修改:

@RestController
public class HelloController {
    
    @Autowired
    private JobLauncher jobLauncher;

    @Autowired
    private Job job;

    @Autowired
    private JobExplorer jobExplorer;

    @GetMapping("/job/start")
    public ExitStatus startJob(String name) throws Exception {

        //run.id 自增前提:先获取到之前jobparameter中run.id 才能进行自增
        // 也就是说, 当前请求想要让run.id 自增,需要获取之前jobparameter才能加-

        //启动job作业
        JobParameters parameters = new JobParametersBuilder(jobExplorer)
                .getNextJobParameters(job)
                .addString("name", name)
                .toJobParameters();

        JobExecution jobExet = jobLauncher.run(job, parameters);
        return jobExet.getExitStatus();
    }
}

8.2 作业停止

作业的停止,存在有3种情况:

  • 一种自然结束

    作业成功执行,正常停止,此时作业返回状态为:COMPLETED

  • 一种异常结束
    作业执行过程因为各种意外导致作业中断而停止,大多数作业返回状态为:FAILED

  • 一种编程结束

    某个步骤处理数据结果不满足下一步骤执行前提,手动让其停止,一般设置返回状态为:STOPED

上面1,2种情况相对简单,我们重点说下第三种:以编程方式让作业停止。

模拟一个操作场景

1>有一个资源类,里面有2个属性:总数:totalCount = 100, 读取数:readCount = 0

2>设计2个步骤,step1 用于叠加readCount 模拟从数据库中读取资源, step2 用于执行逻辑

3>当totalCount == readCount 时,为正常情况,正常结束。如果不等时,为异常状态。此时不执行step2,直接停止作业。

4>修复数据,在从step1开始执行,并完成作业

public class ResouceCount {
    public static int totalCount = 100;  //总数
    public static int  readCount = 0;    //读取数
}

要实现上面需求,有2种方式可以实现

方案1:Step 步骤监听器方式

监听器

public class StopStepListener implements StepExecutionListener {
    @Override
    public void beforeStep(StepExecution stepExecution) {
    }

    @Override
    public ExitStatus afterStep(StepExecution stepExecution) {

        //不满足
        if(ResouceCount.totalCount != ResouceCount.readCount){
            return ExitStatus.STOPPED;  //手动停止,后续可以重启
        }

        return stepExecution.getExitStatus();
    }
}

代码

@SpringBootApplication
@EnableBatchProcessing
public class ListenerJobStopJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    private int readCount = 50; //模拟只读取50个
    
    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                for (int i = 1; i <= readCount; i++) {
                    System.out.println("------------step1执行-"+i+"-------------");
                    ResouceCount.readCount ++;
                }
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("step2执行了.......");
                System.err.println("readCount:" + ResouceCount.readCount + 
                                   ", totalCount:" + ResouceCount.totalCount);
                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public StopStepListener stopStepListener(){
        return 
            new StopStepListener();
    }
    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .listener(stopStepListener())
                .allowStartIfComplete(true)  // 执行完后,允许重启
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-stop-job")
                .start(step1())
            	/* 当step1 返回的是STOPPED状态码,马上结束作业流程,设置流程状态为:STOPPED,
            	   并设置后续重启时,从step1位置开始执行*/
                .on("STOPPED").stopAndRestart(step1())
            	/* 如果step1执行结果不是STOPPED 而是其他状态, 表示满足判断条件,
            	   然后执行step2步骤 */
                .from(step1()).on("*").to(step2()).end()
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(ListenerJobStopJob.class, args);
    }
}

第一次执行(注意打开spring.batch.job.enabled=true,然后启动):tasklet1 中readCount 默认执行50次,不满足条件, stopStepListener() afterStep 返回STOPPED, job进行条件控制走**.on(“STOPPED”).stopAndRestart(step1())** 分支,停止并允许重启–下次重启,从step1步骤开始执行

第二次执行, 修改readCount = 100(模拟修复数据动作), 再次启动作业,task1遍历100次,满足条件, stopStepListener() afterStep 正常返回,job条件控制走**.from(step1()).on(“*”).to(step2()).end()**分支,正常结束。

注意:step1() 方法中**.allowStartIfComplete(true)** 代码必须添加,因为第一次执行step1步骤,虽然不满足条件,但是它仍属于正常结束(正常执行完tasklet1的流程),状态码:COMPLETED, 第二次重启,默认情况下正常结束的step1步骤是不允许再执行的,所以必须设置:.allowStartIfComplete(true) 允许step1即使完成也可以重启。

方案2:StepExecution停止标记
@SpringBootApplication
@EnableBatchProcessing
public class SignJobStopJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    private int readCount = 50; //模拟只读取50个
    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                for (int i = 1; i <= readCount; i++) {
                    System.out.println("--------------step1执行-"+i+"---------------");
                    ResouceCount.readCount ++;
                }

                if(ResouceCount.readCount != ResouceCount.totalCount){
                    chunkContext.getStepContext().getStepExecution().setTerminateOnly();
                }

                return RepeatStatus.FINISHED;
            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("step2执行了.......");
                System.err.println("readCount:" + ResouceCount.readCount + 
                                   ", totalCount:" + ResouceCount.totalCount);
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .allowStartIfComplete(true)
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
         return jobBuilderFactory.get("job-stop-job")
                .start(step1())
                .next(step2())
                .build();

    }
    public static void main(String[] args) {
        SpringApplication.run(SignJobStopJob.class, args);
    }
}

变动的代码有2处

tasket1(), 多了下面判断

if(ResouceCount.readCount != ResouceCount.totalCount){
    chunkContext.getStepContext().getStepExecution().setTerminateOnly();
}

其中的StepExecution#setTerminateOnly() 给运行中的stepExecution设置停止标记,Spring Batch 识别后直接停止步骤,进而停止流程

job() 改动

return jobBuilderFactory.get("job-stop-job")
    .start(step1())
    .next(step2())
    .build();

正常设置步骤流程。

8.3 作业重启

作业重启,表示允许作业步骤重新执行,默认情况下,只允许异常终止状态的步骤重启,但有时存在特殊场景,要求需要其他状态步骤重启,为应付各种复杂的情形,Spring Batch 提供3种重启控制操作。

8.3.1 禁止重启

这种适用一次性执行场景,如果执行失败,就不允许再次执行。可以使用作业的禁止重启逻辑

@SpringBootApplication
@EnableBatchProcessing
public class JobForBidRestartJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                
                System.err.println("-------------tasklet1-------------");

                // 停止步骤
                chunkContext.getStepContext().getStepExecution().setTerminateOnly(); 
                
                return RepeatStatus.FINISHED;

            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet2-------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-forbid-restart-job")
                .preventRestart()  //禁止重启
                .start(step1())
                .next(step2())
                .build();

    }
    
    public static void main(String[] args) {
        SpringApplication.run(JobForBidRestartJob.class, args);
    }
}

观察上面代码,比较特别之处:

tasklet1() 加了setTerminateOnly 设置,表示让步骤退出

 chunkContext.getStepContext().getStepExecution().setTerminateOnly();

job() 多了**.preventRestart()** 逻辑,表示步骤不允许重启

第一次按上面的代码执行一次, step1() 状态为 STOPPED

第二次去掉setTerminateOnly逻辑,重新启动步骤,观察结果,直接报错

image-20221204111033730

8.3.2 限制重启次数

适用于重启次数有限的场景,比如下载/读取操作,可能因为网络原因导致下载/读取失败,运行重试几次,但是不能无限重试。这时可以对步骤执行进行重启次数限制。

@SpringBootApplication
@EnableBatchProcessing
public class JobLimitRestartJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet1-------------");

                 // 停止步骤
                chunkContext.getStepContext().getStepExecution().setTerminateOnly();
                return RepeatStatus.FINISHED;

            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet2-------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
            	// 意味着执行重启1次,注意: springbatch 第一次启动就开始统计了
                .startLimit(2)
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-restart-limit-job")
                .start(step1())
                .next(step2())
                .build();

    }
    
    public static void main(String[] args) {
        SpringApplication.run(JobLimitRestartJob.class, args);
    }
}

变动:

step1() 添加了**.startLimit(2)** 表示运行重启2次,注意,第一次启动也算一次

tasklet1() 设置setTerminateOnly 第一次先让step1 状态为STOPPED

第一次执行, step1 为 STOPPED 状态

第二次执行,不做任何操作,第二次执行,step1 还是STOPPED状态

第三次执行, 注释掉tasklet1() 中setTerminateOnly , 查询结果

image-20221204112325377

8.3.3 无限重启

Spring Batch 限制同job名跟同标识参数作业只能成功执行一次,这是Spring Batch 定理,无法改变的。但是,对于步骤不一定适用,可以通过步骤的allowStartIfComplete(true) 实现步骤的无限重启。

@SpringBootApplication
@EnableBatchProcessing
public class JobAllowRestartJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public Tasklet tasklet1(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet1-------------");
                return RepeatStatus.FINISHED;

            }
        };
    }

    @Bean
    public Tasklet tasklet2(){
        return new Tasklet() {
            @Override
            public RepeatStatus execute(StepContribution contribution, 
                                        ChunkContext chunkContext) throws Exception {
                System.err.println("-------------tasklet2-------------");
                return RepeatStatus.FINISHED;
            }
        };
    }


    @Bean
    public Step step1(){
        return stepBuilderFactory.get("step1")
                .tasklet(tasklet1())
                .build();
    }

    @Bean
    public Step step2(){
        return stepBuilderFactory.get("step2")
                .tasklet(tasklet2())
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("job-allow-restart-job")
                .start(step1())
                .next(step2())
                .build();

    }
    
    public static void main(String[] args) {
        SpringApplication.run(JobAllowRestartJob.class, args);
    }
}

观察上面代码,很正常逻辑

第一次启动:step1 step2正常执行,整个Job 成功执行完成

第二次启动:不做任何改动时,再次启动job,没有报错,但是观察数据库表batch_job_execution 状态为 NOOP 无效执行,step1 step2 不会执行。

第三次启动:给step1或step2 添加上**.allowStartIfComplete(true)**, 再次启动,一切正常,并且可以无限启动(step1和step2谁加了这个allowStartIfComplete(true),谁在重启时就可以执行,没有加的话,重启时就不会执行)

九、ItemReader

居于块操作的步骤由一个ItemReader,一个ItemProcessor和一个ItemWriter组成,一个负责读取数据,一个负责处理数据,一个负责输出数据,上一章节讲完步骤,接下来就重点讲解Spring Batch 输入组件:ItemReader

ItemReader 是Spring Batch 提供的输入组件,规范接口是ItemReader, 里面有个read() 方法,我们可以实现该接口去定制输入逻辑。

public interface ItemReader<T> {
	@Nullable
	T read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException;
}

Spring Batch 根据常用的输入类型,提供许多默认的实现,包括:平面文件、数据库、JMS资源和其他输入源等,接下来一起操作一下比较场景的输入场景。

9.1 读平面文件

平面文件一般指的都是简单行/多行结构的纯文本文件,比如记事本记录文件。与xml这种区别在于没有结构,没有标签的限制。

Spring Batch默认使用 FlatFileItemReader 实现平面文件的输入。

9.1.1 方式1:delimited–字符串截取

需求:读取user.txt文件,解析出所有用户信息

user.txt

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

实体类

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

实现作业

//读user.txt文件封装user对象中并打印
@EnableBatchProcessing
@SpringBootApplication
public class FlatReaderJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    //job--->step---tasklet
    //job--->step-chunk----reader---writer

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public FlatFileItemReader<User> itemReader(){
        return new FlatFileItemReaderBuilder<User>()
            .name("userItemReader")
            //获取文件
            .resource(new ClassPathResource("user.txt"))
            //解析数据--指定解析器使用# 分割--默认是 ,号
            .delimited().delimiter("#")
            //按照 # 截取数据之后, 数据怎么命名
            .names("id", "name", "age")
            //封装数据--将读取的数据封装到对象:User对象
            .targetType(User.class)
            .build();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
            .<User,User>chunk(1) //一次读多少数据
            .reader(itemReader())
            .writer(itemWriter())
            .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("flat-reader-job")
            .start(step())
            .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(FlatReaderJob.class, args);
    }
}

核心在userItemReader() 实例方法

//FlatFileItemReader spring batch 平面文件读入类
//这个类操作特点:一行一行的读数据
@Bean
public FlatFileItemReader<User> userItemReader(){
    return new FlatFileItemReaderBuilder<User>()
        .name("userItemReader")
        .resource(new ClassPathResource("users.txt"))  //指定读取的文件
        .delimited().delimiter("#")  //读取出一行数据,该如何分割数据,默认以,分割,当前使用#号分割
        .targetType(User.class)      //读取出一行数据封装成什么对象
        //给分割后数据打name标记,后续跟User对象属性进行映射
        .names("id", "name", "age")  
        .build();
}

除了上面讲到的核心方法,FlatFileItemReaderBuilder还提供.fieldSetMapper .lineTokenizer 2个方法,用于定制文件解析与数据映射。

9.1.2 方式2:FieldSetMapper–字段映射

FlatFileItemReaderBuilder 提供的方法,用于字段映射,方法参数是一个FieldSetMapper接口对象

public interface FieldSetMapper<T> {
	T mapFieldSet(FieldSet fieldSet) throws BindException;
}

FieldSet 字段集合,FlatFileItemReader 解析出一行数据,会将这行数据封装到FieldSet对象中。

我们用一个案例来解释一下FieldSetMapper 用法

编写users2.txt文件

1#dafei#18#广东#广州#天河区
2#xiaofei#16#四川#成都#武侯区
3#laofei#20#广西#桂林#雁山区
4#zhongfei#19#广东#广州#白云区
5#feifei#15#广东#广州#越秀区

用户对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
    private String address;
}

观察,user2.txt文件中有 id name age province city area 按理用户对象属性应该一一对应,但是此时User只有address,也就是说,后续要将 province , city , area 合并成 address 地址值。此时怎么办?这是就需要自定义FieldSetMapper 啦。

public class UserFieldMapper implements FieldSetMapper<User> {
    
    @Override
    public User mapFieldSet(FieldSet fieldSet) throws BindException {

        //自己定义映射逻辑
        User User = new User();
        
        User.setId(fieldSet.readLong("id"));
        
        User.setAge(fieldSet.readInt("age"));
        
        User.setName(fieldSet.readString("name"));
        
        String addr = fieldSet.readString("province") 
            + " " + fieldSet.readString("city") 
            + " " + fieldSet.readString("area");
        
        User.setAddress(addr);
        
        return User;
    }
}

上面代码实现FieldSet与User对象映射,将province city area 合并成一个属性address。另外readXxx 是FieldSet 独有的方法,Xxx是java基本类型。

//读user.txt文件封装user对象中并打印
@EnableBatchProcessing
@SpringBootApplication
public class MapperFlatReaderJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    //job--->step---tasklet
    //job--->step-chunk----reader---writer

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public UserFieldMapper userFieldMapper(){
        return new UserFieldMapper();
    }

    @Bean
    public FlatFileItemReader<User> itemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                //获取文件
                .resource(new ClassPathResource("users2.txt"))
                //解析数据--指定解析器使用# 分割--默认是 ,号
                .delimited().delimiter("#")
                //按照 # 截取数据之后, 数据怎么命名
                .names("id", "name", "age","province","city","area")
                //封装数据--将读取的数据封装到对象:User对象
                //.targetType(User.class)  自定封装
                .fieldSetMapper(userFieldMapper())
                .build();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1) //一次读多少数据
                .reader(itemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("mapper-flat-reader-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(MapperFlatReaderJob.class, args);
    }

}

上面代码核心在userItemReader实例方法

.fieldSetMapper(userFieldMapper()) : 用上自定义的字段映射器

.names(“id”, “name”, “age”, “province”, “city”, “area”) : users2.txt 每一行使用#分割出现6列,给每一列取名字,然后将其封装到FieldSet对象中

.targetType(User.class) : 注意,使用了fieldSetMapper 之后,不需要在加上这行

9.2 读JSON文件

Spring Batch 也提供专门操作Json文档的API : JsonItemReader,具体使用且看案例

需求:读取下面json格式文档

[
  {"id":1, "name":"dafei", "age":18},
  {"id":2, "name":"xiaofei", "age":17},
  {"id":3, "name":"zhongfei", "age":16},
  {"id":4, "name":"laofei", "age":15},
  {"id":5, "name":"feifei", "age":14}
]

封装成User对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}
@EnableBatchProcessing
@SpringBootApplication
public class JsonFlatReaderJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    //job--->step---tasklet
    //job--->step-chunk----reader---writer

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public JsonItemReader<User> itemReader(){

        //当前读取json使用阿里jackson 框架
        //参数:读取json格式文件转换成具体对象类型: User.class
        JacksonJsonObjectReader<User> jsonObjectReader = new JacksonJsonObjectReader<>(User.class);
        ObjectMapper objectMapper = new ObjectMapper();
        jsonObjectReader.setMapper(objectMapper);

        return new JsonItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("user.json"))
                .jsonObjectReader(jsonObjectReader)
                .build();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1) //一次读多少数据
                .reader(itemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("json-flat-reader-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(JsonFlatReaderJob.class, args);
    }

}

上面代码核心在:userItemReader() 实例方法,明确指定转换成json格式需要使用转换器,本次使用的Jackson

9.3 读数据库

下面是一张用户表user, 如果数据是存放在数据库中,那么又该怎么读取?

CREATE TABLE `user` (
  `id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键',
  `name` varchar(255) DEFAULT NULL COMMENT '用户名',
  `age` int DEFAULT NULL COMMENT '年龄',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb3;
INSERT INTO `user` VALUES (1, 'dafei', 18);
INSERT INTO `user` VALUES (2, 'xiaofei', 17);
INSERT INTO `user` VALUES (3, 'zhongfei', 16);
INSERT INTO `user` VALUES (4, 'laofei', 15);
INSERT INTO `user` VALUES (5, 'feifei', 14);

Spring Batch 提供2种从数据库中读取数据的方式:

9.3.1 基于游标方式

image-20221205155534928

游标是数据库中概念,可以简单理解为一个指针

image-20221205152543915

游标遍历时,获取数据表中某一条数据,如果使用JDBC操作,游标指向的那条数据会被封装到ResultSet中,如果想将数据从ResultSet读取出来,需要借助Spring Batch 提供RowMapper 实现表数据与实体对象的映射。

user表数据---->User对象

Spring Batch JDBC 实现数据表读取需要做几个准备

1>实体对象User

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

2>RowMapper 表与实体对象映射实现类

public class UserRowMapper implements RowMapper<User> {
    @Override
    public User mapRow(ResultSet rs, int rowNum) throws SQLException {
        User user = new User();
        user.setId(rs.getLong("id"));
        user.setName(rs.getString("name"));
        user.setAge(rs.getInt("age"));
        return user;
    }
}

3>JdbcCursorItemReader编写

@EnableBatchProcessing
@SpringBootApplication
public class CursorDBReaderJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private DataSource dataSource;

    //job--->step---tasklet
    //job--->step-chunk----reader---writer

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }


    //将列数据与对象属性一一映射
    @Bean
    public UserRowMapper userRowMapper(){
        return new UserRowMapper();
    }

    //使用jdbc游标方式读数据
    @Bean
    public JdbcCursorItemReader<User> itemReader(){

        return new JdbcCursorItemReaderBuilder<User>()
                .name("userItemReader")
                //连接数据库, spring容器自己实现
                .dataSource(dataSource)
                //执行sql查询数据, 将返回的数据以游标形式一条一条读
                .sql("select * from user")
                //数据库读出数据跟用户对象属性一一映射
                .rowMapper(userRowMapper())
                .build();
    }




    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(2) //一次读多少数据
                .reader(itemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("cursor-db-reader-job1")
                .start(step())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    
    public static void main(String[] args) {
        SpringApplication.run(CursorDBReaderJob.class, args);
    }

}

解析:

1>操作数据库,需要引入DataSource

2>留意userItemReader() 方法,需要明确指定操作数据库sql

3>留意userItemReader() 方法,需要明确指定游标回来之后,数据映射规则:rowMapper

这里要注意,如果sql需要where 条件,需要额外定义

比如: 查询 age > 16的用户

@Bean
public JdbcCursorItemReader<User> userItemReader(){
    return new JdbcCursorItemReaderBuilder<User>()
        .name("userCursorItemReader")
        .dataSource(dataSource)
        .sql("select * from user where age < ?")
        .rowMapper(userRowMapper())
        //拼接参数
        .preparedStatementSetter(new ArgumentPreparedStatementSetter(new Object[]{16}))
        .build();
}

9.3.2 基于分页方式

image-20221205155552416

游标的方式是查询出所有满足条件的数据,然后一条一条读取,而分页是按照指定设置的pageSize数,一次性读取pageSize条。

分页查询方式需要几个要素

1>实体对象,跟游标方式一样

2>RowMapper映射对象,跟游标方式一样

3>数据源,跟游标方式一样

4>PagingQueryProvider 分页逻辑提供者

@EnableBatchProcessing
@SpringBootApplication
public class PageDBReaderJob {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private DataSource dataSource;

    //job--->step---tasklet
    //job--->step-chunk----reader---writer

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }


    //将列数据与对象属性一一映射
    @Bean
    public UserRowMapper userRowMapper(){
        return new UserRowMapper();
    }

    //分页查询逻辑
    @Bean
    public PagingQueryProvider pagingQueryProvider() throws Exception {
        SqlPagingQueryProviderFactoryBean factoryBean 
            = new SqlPagingQueryProviderFactoryBean();
        factoryBean.setDataSource(dataSource);
        factoryBean.setSelectClause("select *");  //查询语句
        factoryBean.setFromClause("from user");  //查询表
        factoryBean.setWhereClause("where age > :age");  //:age表示占位符
        factoryBean.setSortKey("id");

        return factoryBean.getObject();
    }

    // select * from user where .... limit ?,pageSize
    //使用jdbc游标方式读数据
    @Bean
    public JdbcPagingItemReader<User> itemReader() throws Exception {

        Map<String, Object> map = new HashMap<>();
        map.put("age", 16);

        return new JdbcPagingItemReaderBuilder<User>()
                .name("userItemReader2")
                .dataSource(dataSource)
                .rowMapper(userRowMapper())
                .queryProvider(pagingQueryProvider())  //分页逻辑
                .parameterValues(map) //sql条件
                .pageSize(10)
                .build();
    }




    @Bean
    public Step step() throws Exception {
        return stepBuilderFactory.get("step3")
                .<User, User>chunk(2) //一次读多少数据
                .reader(itemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job job() throws Exception {
        return jobBuilderFactory.get("page-db-reader-job2")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(PageDBReaderJob.class, args);
    }


}

解析:

1>需要提供pagingQueryProvider 用于拼接分页SQL

2>userItemReader() 组装分页查询逻辑。

9.4 读取异常

任何输入都有可能存在异常情况,那Spring Batch 如何应对输入异常情况呢? 3种操作逻辑:

1>跳过异常记录

这里逻辑是当Spring Batch 在读取数据时,根据各种意外情况抛出不同异常,ItemReader 可以按照约定跳过指定的异常,同时也可以限制跳过次数。

@Bean
public Step step() throws Exception {
    return stepBuilderFactory.get("step1")
        .<User, User>chunk(1)
        .reader(userItemReader())
        .writer(itemWriter())
        .faultTolerant() //容错
        .skip(Exception.class)  //跳过啥异常
        .noSkip(RuntimeException.class)  //不能跳过啥异常
        .skipLimit(10)  //跳过异常次数
        .skipPolicy(new SkipPolicy() {
            @Override
            public boolean shouldSkip(Throwable t, 
                                      int skipCount) throws SkipLimitExceededException {
                //定制跳过异常与异常次数
                return false;
            }
        })
        .build();

}

如果出错直接跳过去,这操作有点自欺欺人,并不是优雅的解决方案。开发可选下面这种。

2>异常记录记日志

所谓记录日志,就是当ItemReader 读取数据抛出异常时,将具体数据信息记录下来,方便后续人工接入。

具体实现使用ItemReader监听器(直接设置给Step)。

public class ErrorItemReaderListener implements ItemReadListener {
    @Override
    public void beforeRead() {

    }

    @Override
    public void afterRead(Object item) {

    }

    @Override
    public void onReadError(Exception ex) {
        System.out.println("记录读数据相关信息...");
    }
}

3>放弃处理

这种异常在处理不是很重要数据时候使用。

十、ItemProcessor

前面我们多次讲过,居于块的读与写,中间还夹着一个ItemProcessor 条目处理。当我们通过ItemReader 将数据读取出来之后,你面临2个选择:

1>直接将数据转向输出

2>对读入的数据进行再加工。

如果选择第一种,那ItemProcessor 可以不用出现,如果选择第二种,就需要引入ItemProcessor 条目处理组件啦。

Spring Batch 为Processor 提供默认的处理器与自定义处理器2种模式以满足各种需求。

10.1 默认ItemProcessor

Spring Batch 提供现成的ItemProcessor 组件有4种:

10.1.1 ValidatingItemProcessor:校验处理器

这个好理解,很多时候ItemReader读出来的数据是相对原始的数据,并没有做过多的校验

数据文件users-validate.txt

1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15

比如上面文本数据,第一条,第二条name数值没有指定,在ItemReader 读取之后,必定将 “” 空串封装到User name属性中,语法上没有错,但逻辑上可以做文章,比如:用户名不为空。

解决上述问题,可以使用Spring Batch 提供ValidatingItemProcessor 校验器处理。

接下来我们看下ValidatingItemProcessor 怎么实现

1>导入校验依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-validation</artifactId>
</dependency>

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    @NotBlank(message = "用户名不能为null或空串")
    private String name;
    private int age;
}

3>实现

@SpringBootApplication
@EnableBatchProcessing
public class ValidationProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-validate.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
                System.out.println("--------------------" + items.size());
            }
        };
    }


    @Bean
    public BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){
        BeanValidatingItemProcessor<User> beanValidatingItemProcessor 
                                  = new BeanValidatingItemProcessor<>();
        beanValidatingItemProcessor.setFilter(true);  //不满足条件丢弃数据

        return beanValidatingItemProcessor;
    }


    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(2)
                .reader(userItemReader())
                .processor(beanValidatingItemProcessor())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("validate-processor-job4")
                .start(step())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ValidationProcessorJob.class, args);
    }
}

解析:

1>核心是beanValidatingItemProcessor() 实例方法,核心BeanValidatingItemProcessor 类是Spring Batch 提供现成的Validator校验类,这里直接使用即可。BeanValidatingItemProcessor 是 ValidatingItemProcessor 子类

2> step()实例方法,多了**.processor(beanValidatingItemProcessor())** 操作,引入ItemProcessor 组件。

10.1.2 ItemProcessorAdapter:适配器处理器

开发中,很多的校验逻辑已经有现成的啦,那做ItemProcessor处理时候,是否能使用现成逻辑呢?答案 是:yes

比如:现有处理逻辑:将User对象中name转换成大写

public class UserServiceImpl{
    public User toUppeCase(User user){
        user.setName(user.getName().toUpperCase());
        return user;
    }
}

新建users-adapter.txt 文件,用于测试

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

完整的逻辑

@SpringBootApplication
@EnableBatchProcessing
public class AdapterProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-adapter.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }
    @Bean
    public UserServiceImpl userService(){
        return new UserServiceImpl();
    }
    @Bean
    public ItemProcessorAdapter<User, User> itemProcessorAdapter(){
        ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();
        adapter.setTargetObject(userService());
        adapter.setTargetMethod("toUppeCase");

        return adapter;
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(itemProcessorAdapter())
                .writer(itemWriter())
                .build();

    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("adapter-processor-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(AdapterProcessorJob.class, args);
    }
}

解析:

观察itemProcessorAdapter()实例方法,引入ItemProcessorAdapter 适配器类,绑定自定义的UserServiceImpl 类与toUppeCase方法,当ItemReader 读完之后,马上调用UserServiceImpl 类的toUppeCase 方法处理逻辑。方法传参数会被忽略,ItemProcessor会自动处理。

10.1.3 ScriptItemProcessor:脚本处理器

前面要实现User name 变大写,需要大费周折,又定义类,又是定义方法,能不能简化一点。答案也是yes, Spring Batch 提供js脚本的形式,将上面逻辑写到js文件中,加载这文件,就可以实现,省去定义类,定义方法的麻烦。

需求:使用js脚本方式实现用户名大写处理

userScript.js

item.setName(item.getName().toUpperCase());
item;

这里注意:

1>item是约定的单词,表示ItemReader读除来每个条目

2>userScript.js文件放置到resource资源文件中

完整代码

package com.langfeiyes.batch._28_itemprocessor_script;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.ScriptItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ScriptProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-adapter.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }


    @Bean
    public ScriptItemProcessor<User, User> scriptItemProcessor(){
        ScriptItemProcessor<User, User> scriptItemProcessor = new ScriptItemProcessor();
        scriptItemProcessor.setScript(new ClassPathResource("userScript.js"));
        return scriptItemProcessor;
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(scriptItemProcessor())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("script-processor-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ScriptProcessorJob.class, args);
    }
}

解析:

核心还是scriptItemProcessor() 实例方法,ScriptItemProcessor 类用于加载js 脚本并处理js脚本。

10.1.4 CompositeItemProcessor:组合处理器

CompositeItemProcessor是一个ItemProcessor处理组合,类似于过滤器链,数据先经过第一个处理器,然后再经过第二个处理器,直到最后。前一个处理器处理的结果,是后一个处理器的输出。

image-20221206120116269

需求:将解析出来用户name进行判空处理,并将name属性转换成大写

1>读取文件:users-validate.txt

1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>封装的实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    @NotBlank(message = "用户名不能为null或空串")
    private String name;
    private int age;
}

3>用于转换大写工具类

public class UserServiceImpl {
    public User toUppeCase(User user){
        user.setName(user.getName().toUpperCase());
        return user;
    }
}

4>完整代码

package com.langfeiyes.batch._29_itemprocessor_composite;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.adapter.ItemProcessorAdapter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.CompositeItemProcessor;
import org.springframework.batch.item.validator.BeanValidatingItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.Arrays;
import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class CompositeProcessorJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users-validate.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public UserServiceImpl userService(){
        return new UserServiceImpl();
    }
    @Bean
    public BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){
        BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();
        beanValidatingItemProcessor.setFilter(true);  //不满足条件丢弃数据
        return beanValidatingItemProcessor;
    }

    @Bean
    public ItemProcessorAdapter<User, User> itemProcessorAdapter(){
        ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();
        adapter.setTargetObject(userService());
        adapter.setTargetMethod("toUppeCase");
        return adapter;
    }

    @Bean
    public CompositeItemProcessor<User, User>  compositeItemProcessor(){
        CompositeItemProcessor<User, User> compositeItemProcessor = new CompositeItemProcessor<>();
        compositeItemProcessor.setDelegates(Arrays.asList(
                beanValidatingItemProcessor(), itemProcessorAdapter()
        ));
        return  compositeItemProcessor;
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .processor(compositeItemProcessor())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("composite-processor-job")
                .start(step())
                .build();
    }
    
    public static void main(String[] args) {
        SpringApplication.run(CompositeProcessorJob.class, args);
    }
}

解析:

核心代码:compositeItemProcessor() 实例方法,使用setDelegates 操作将其他ItemProcessor 处理合并成一个。

10.2 自定义ItemProcessor处理器

除去上面默认的几种处理器外,Spring Batch 也允许我们自定义,具体做法只需要实现ItemProcessor接口即可

需求:自定义处理器,筛选出id为偶数的用户

1>定义读取文件user.txt

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>自定义处理器

//自定义
public class CustomizeItemProcessor implements ItemProcessor<User,User> {
    @Override
    public User process(User item) throws Exception {
        
        System.out.println("CustomizeItemProcessor process " + item);

        //id 为偶数的用户放弃
        //返回null时候 读入的item会被放弃,不会进入itemwriter
        return item.getId() % 2 != 0 ? item : null;
    }
}

4>完整代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class CustomizeProcessorJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
            .name("userItemReader")
            .resource(new ClassPathResource("users.txt"))
            .delimited().delimiter("#")
            .names("id", "name", "age")
            .targetType(User.class)
            .build();
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                System.out.println("writer " + items.size());
                items.forEach(System.err::println);
            }
        };
    }
    @Bean
    public CustomizeItemProcessor customizeItemProcessor(){
        return new CustomizeItemProcessor();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
            .<User, User>chunk(2)
            .reader(userItemReader())
            .processor(customizeItemProcessor())
            .writer(itemWriter())
            .build();

    }
    @Bean
    public Job job(){
        return jobBuilderFactory.get("customize-processor-job")
            .start(step())
            .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CustomizeProcessorJob.class, args);
    }
}

十一、ItemWriter

有输入那肯定有输出,前面讲了输入ItemReader,接下来就看本篇的输出器:ItemWriter, Spring Batch提供的数据输出组件与数据输入组件是成对,也就是说有啥样子的输入组件,就有啥样子的输出组件。

11.1 输出平面文件

当将读入的数据输出到纯文本文件时,可以通过FlatFileItemWriter 输出器实现。

需求:将user.txt中数据读取出来,输出到outUser.txt文件中

1>定义user.txt文件

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>实现代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class FlatWriteJob {
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public FlatFileItemWriter<User> itemWriter(){
        return new FlatFileItemWriterBuilder<User>()
                .name("userItemWriter")
                .resource(new PathResource("c:/outUser.txt"))  // 输出的文件
                .formatted()                                   // 数据格式指定
                .format("id: %s,姓名:%s,年龄:%s")              // 输出数据格式
                .names("id", "name", "age")                    // 需要输出属性
                .build();
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("flat-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(FlatWriteJob.class, args);
    }
}

解析:

上面代码核心是itemWriter() 方法,设置到itemWrite读取器配置与输出

id: 1,姓名:dafei,年龄:18
id: 2,姓名:xiaofei,年龄:16
id: 3,姓名:laofei,年龄:20
id: 4,姓名:zhongfei,年龄:19
id: 5,姓名:feifei,年龄:15

一些拓展

@Bean
public FlatFileItemWriter<User> itemWriter(){
    return new FlatFileItemWriterBuilder<User>()
        .name("userItemWriter")
        .resource(new PathResource("c:/outUser.txt"))  // 输出的文件
        .formatted()  //数据格式指定
        .format("id: %s,姓名:%s,年龄:%s")              // 输出数据格式
        .names("id", "name", "age")                    // 需要输出属性
        .shouldDeleteIfEmpty(true)   // 如果读入数据为空,输出时创建文件直接删除
        .shouldDeleteIfExists(true)  // 如果输出文件已经存在,则删除
        .append(true)                // 如果输出文件已经存在, 不删除,直接追加到现有文件中
        .build();
}

11.2 输出Json文件

当将读入的数据输出到Json文件时,可以通过JsonFileItemWriter输出器实现。

需求:将user.txt中数据读取出来,输出到outUser.json文件中

沿用上面的user.txt, user对象将数据输出到outUser.json

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

@SpringBootApplication
@EnableBatchProcessing
public class JsonWriteJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }


    @Bean
    public JacksonJsonObjectMarshaller<User> objectMarshaller(){
        JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();
        return marshaller;
    }

    @Bean
    public JsonFileItemWriter<User> itemWriter(){
        return new JsonFileItemWriterBuilder<User>()
                .name("jsonUserItemWriter")
                .resource(new PathResource("c:/outUser.json"))
                .jsonObjectMarshaller(objectMarshaller())
                .build();
    }


    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(2)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("json-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(JsonWriteJob.class, args);
    }
}

结果:

[
 {"id":1,"name":"dafei","age":18},
 {"id":2,"name":"xiaofei","age":16},
 {"id":3,"name":"laofei","age":20},
 {"id":4,"name":"zhongfei","age":19},
 {"id":5,"name":"feifei","age":15}
]

解析:

1>itemWriter() 实例方法构建JsonFileItemWriter 实例,需要明确指定Json格式装配器

2>Spring Batch默认提供装配器有2个:JacksonJsonObjectMarshaller GsonJsonObjectMarshaller 分别对应Jackson 跟 Gson 2种json格式解析逻辑,本案例用的是Jackson

11.3 输出数据库

当将读入的数据需要输出到数据库时,可以通过JdbcBatchItemWriter输出器实现。

需求:将user.txt中数据读取出来,输出到数据库user表中

沿用上面的user.txt, user对象将数据输出到user表中

1>定义操作数据库预编译类

//写入数据库需要操作insert sql, 使用预编译就需要明确指定参数值
public class UserPreStatementSetter implements ItemPreparedStatementSetter<User> {
    @Override
    public void setValues(User item, PreparedStatement ps) throws SQLException {
        ps.setLong(1, item.getId());
        ps.setString(2, item.getName());
        ps.setInt(3, item.getAge());
    }
}

2>完整代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

import javax.sql.DataSource;

@SpringBootApplication
@EnableBatchProcessing
public class JdbcWriteJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private DataSource dataSource;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }
    @Bean
    public UserPreStatementSetter preStatementSetter(){
        return new UserPreStatementSetter();
    }
    @Bean
    public JdbcBatchItemWriter<User>  itemWriter(){
        return new JdbcBatchItemWriterBuilder<User>()
                .dataSource(dataSource)
                .sql("insert into user(id, name, age) values(?,?,?)")
                .itemPreparedStatementSetter(preStatementSetter())
                .build();
    }
    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("jdbc-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(JdbcWriteJob.class, args);
    }
}

解析:

核心代码在itemWriter() 实例方法中, 需要1>准备构建JdbcBatchItemWriter实例 2>提前准备数据, 3>准备sql语句 4>准备参数绑定器

11.4 输出多终端

上面几种输出方法都是一对一,真实开发可能没那么简单了,可能存在一对多,多个终端输出,此时怎么办?答案是使用Spring Batch 提供的CompositeItemWriter 组合输出器。

需求:将user.txt中数据读取出来,输出到outUser.txt/outUser.json/数据库user表中

沿用上面的user.txt, user对象将数据输出到outUser.txt/outUser.json/user表中

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.batch.item.support.CompositeItemWriter;
import org.springframework.batch.item.support.builder.CompositeItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;

import javax.sql.DataSource;
import java.util.Arrays;

@SpringBootApplication
@EnableBatchProcessing
public class CompositeWriteJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    public DataSource dataSource;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }

    @Bean
    public FlatFileItemWriter<User> flatFileItemWriter(){
        return new FlatFileItemWriterBuilder<User>()
                .name("userItemWriter")
                .resource(new PathResource("c:/outUser.txt"))
                .formatted()  //数据格式指定
                .format("id: %s,姓名:%s,年龄:%s")  //输出数据格式
                .names("id", "name", "age")  //需要输出属性
                .build();
    }

    @Bean
    public JacksonJsonObjectMarshaller<User> objectMarshaller(){
        JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();
        return marshaller;
    }

    @Bean
    public JsonFileItemWriter<User> jsonFileItemWriter(){
        return new JsonFileItemWriterBuilder<User>()
                .name("jsonUserItemWriter")
                .resource(new PathResource("c:/outUser.json"))
                .jsonObjectMarshaller(objectMarshaller())
                .build();
    }

    @Bean
    public UserPreStatementSetter preStatementSetter(){
        return new UserPreStatementSetter();
    }


    @Bean
    public JdbcBatchItemWriter<User> jdbcBatchItemWriter(){
        return new JdbcBatchItemWriterBuilder<User>()
                .dataSource(dataSource)
                .sql("insert into user(id, name, age) values(?,?,?)")
                .itemPreparedStatementSetter(preStatementSetter())
                .build();
    }

    @Bean
    public CompositeItemWriter<User> compositeItemWriter(){
        return new CompositeItemWriterBuilder<User>()
                .delegates(Arrays.asList(flatFileItemWriter(), 
                                         jsonFileItemWriter(), 
                                         jdbcBatchItemWriter())
                          )
                .build();
    }


    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(1)
                .reader(userItemReader())
                .writer(compositeItemWriter())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("composite-writer-job")
                .start(step())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(CompositeWriteJob.class, args);
    }
}

解析:

代码没有啥技术难度,都是将前面的几种方式通过CompositeItemWriter 类整合在一起

@Bean
public CompositeItemWriter<User> compositeItemWriter(){
    return new CompositeItemWriterBuilder<User>()
        .delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter()))
        .build();
}

十二、Spring Batch 高级

前面讲的Spring Batch 基本上能满足日常批处理了,下面则是Spring Batch 高级部分内容,大家可以自己选择了解。

12.1 多线程步骤

默认的情况下,步骤基本上在单线程中执行,那能不能在多线程环境执行呢?答案肯定是yes,但是也要注意,多线程环境步骤执行一定要慎重。原因:多线程环境下,步骤是要设置不可重启

Spring Batch 的多线程步骤是使用Spring 的 TaskExecutor(任务执行器)实现的。约定每一个块开启一个线程独立执行

image-20221207161556238

需求:分5个块处理user-thread.txt文件

1>编写user-thread.txt文件

1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
6#zhangsan#14
7#lisi#13
8#wangwu#12
9#zhaoliu#11
10#qianqi#10

2>定义实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>完整代码

import lombok.extern.slf4j.Slf4j;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.List;

@Slf4j
@SpringBootApplication
@EnableBatchProcessing
public class ThreadStepJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Bean
    public FlatFileItemReader<User> userItemReader(){
        log.info("userItemReader");
        FlatFileItemReader<User> reader = new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .saveState(false) // 防止状态被覆盖
                .resource(new ClassPathResource("user-thread.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();

        return reader;
    }

    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                log.info("准备写入数据...{}, {}", items.size(), items);
            }
        };
    }

    @Bean
    public Step step(){
        return stepBuilderFactory.get("step1")
                .<User, User>chunk(2)
                .reader(userItemReader())
                .writer(itemWriter())
                .taskExecutor(new SimpleAsyncTaskExecutor())
                .build();

    }

    @Bean
    public Job job(){
        return jobBuilderFactory.get("thread-step-job")
                .start(step())
                .incrementer(new RunIdIncrementer())
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ThreadStepJob.class, args);
    }
}

4>结果

08:28:39.141  INFO 4152 --- [           main] com.zzhua.demo01.ThreadStepJob           : Started ThreadStepJob in 4.598 seconds (JVM running for 5.41)
08:28:39.144  INFO 4152 --- [           main] o.s.b.a.b.JobLauncherApplicationRunner   : Running default command line with: []
08:28:39.347  INFO 4152 --- [           main] o.s.b.c.l.support.SimpleJobLauncher      : Job: [SimpleJob: [name=thread-step-job]] launched with the following parameters: [{run.id=8}]
08:28:39.416  INFO 4152 --- [           main] o.s.batch.core.job.SimpleStepHandler     : Executing step: [step1]
08:28:39.469  INFO 4152 --- [cTaskExecutor-4] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=2, name=xiaofei, age=16), User(id=5, name=feifei, age=15)]
08:28:39.469  INFO 4152 --- [cTaskExecutor-1] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=1, name=dafei, age=18), User(id=6, name=zhangsan, age=14)]
08:28:39.469  INFO 4152 --- [cTaskExecutor-3] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=3, name=laofei, age=20), User(id=7, name=lisi, age=13)]
08:28:39.469  INFO 4152 --- [cTaskExecutor-2] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=4, name=zhongfei, age=19), User(id=8, name=wangwu, age=12)]
08:28:39.493  INFO 4152 --- [cTaskExecutor-5] com.zzhua.demo01.ThreadStepJob           : 准备写入数据...2, [User(id=9, name=zhaoliu, age=11), User(id=10, name=qianqi, age=10)]
08:28:39.540  INFO 4152 --- [           main] o.s.batch.core.step.AbstractStep         : Step: [step1] executed in 123ms
08:28:39.554  INFO 4152 --- [           main] o.s.b.c.l.support.SimpleJobLauncher      : Job: [SimpleJob: [name=thread-step-job]] completed with the following parameters: [{run.id=8}] and the following status: [COMPLETED] in 166ms

解析

1:userItemReader() 加上saveState(false) Spring Batch 提供大部分的ItemReader是有状态的,作业重启基本通过状态来确定作业停止位置,而在多线程环境中,如果对象维护状态被多个线程访问,可能存在线程间状态相互覆盖问题。所以设置为false表示关闭状态,但这也意味着作业不能重启了。

2:step() 方法加上**.taskExecutor(new SimpleAsyncTaskExecutor())** 为作业步骤添加了多线程处理能力,以块为单位,一个块一个线程,观察上面的结果,很明显能看出输出的顺序是乱序的。改变 job 的名字再执行,会发现输出数据每次都不一样。

12.2 并行步骤

并行步骤,指的是某2个或者多个步骤同时执行。比如下图

image-20221207171233826

图中,流程从步骤1执行,然后执行步骤2, 步骤3,当步骤2/3执行结束之后,在执行步骤4.

设想一种场景,当读取2个c或者多个互不关联的文件时,可以多个文件同时读取,这个就是并行步骤。

需求:现有user-parallel.txt, user-parallel.json 2个文件将它们中数据读入内存

1>编写user-parallel.txt, user-parallel.json

6#zhangsan#14
7#lisi#13
8#wangwu#12
9#zhaoliu#11
10#qianqi#10
[
  {"id":1, "name":"dafei", "age":18},
  {"id":2, "name":"xiaofei", "age":17},
  {"id":3, "name":"zhongfei", "age":16},
  {"id":4, "name":"laofei", "age":15},
  {"id":5, "name":"feifei", "age":14}
]

2>编写实体对象

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

3>代码实现

import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.job.builder.FlowBuilder;
import org.springframework.batch.core.job.flow.Flow;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectReader;
import org.springframework.batch.item.json.JsonItemReader;
import org.springframework.batch.item.json.builder.JsonItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class ParallelStepJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;


    @Bean
    public JsonItemReader<User> jsonItemReader(){
        ObjectMapper objectMapper = new ObjectMapper();
        JacksonJsonObjectReader<User> jsonObjectReader 
                                      = new JacksonJsonObjectReader<>(User.class);
        jsonObjectReader.setMapper(objectMapper);

        return new JsonItemReaderBuilder<User>()
                .name("userJsonItemReader")
                .jsonObjectReader(jsonObjectReader)
                .resource(new ClassPathResource("user-parallel.json"))
                .build();
    }

    @Bean
    public FlatFileItemReader<User> flatItemReader(){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("user-parallel.txt"))
                .delimited().delimiter("#")
                .names("id", "name", "age")
                .targetType(User.class)
                .build();
    }
    
    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    @Bean
    public Step jsonStep(){
        return stepBuilderFactory.get("jsonStep")
                .<User, User>chunk(2)
                .reader(jsonItemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Step flatStep(){
        return stepBuilderFactory.get("step2")
                .<User, User>chunk(2)
                .reader(flatItemReader())
                .writer(itemWriter())
                .build();
    }

    @Bean
    public Job parallelJob(){

        //线程1-读user-parallel.txt
        Flow parallelFlow1 = new FlowBuilder<Flow>("parallelFlow1")
                .start(flatStep())
                .build();

        //线程2-读user-parallel.json
        Flow parallelFlow2 = new FlowBuilder<Flow>("parallelFlow2")
                .start(jsonStep())
                .split(new SimpleAsyncTaskExecutor())
                .add(parallelFlow1)
                .build();


        return jobBuilderFactory.get("parallel-step-job")
                .start(parallelFlow2)
                .end()
                .build();
    }
    public static void main(String[] args) {
        SpringApplication.run(ParallelStepJob.class, args);
    }
}

结果

User(id=6, name=zhangsan, age=14)
User(id=7, name=lisi, age=13)
User(id=8, name=wangwu, age=12)
User(id=9, name=zhaoliu, age=11)
User(id=1, name=dafei, age=18)
User(id=2, name=xiaofei, age=17)
User(id=10, name=qianqi, age=10)
User(id=3, name=zhongfei, age=16)
User(id=4, name=laofei, age=15)
User(id=5, name=feifei, age=14)

解析:

1:jsonItemReader() flatItemReader() 定义2个读入操作,分别读json格式跟普通文本格式

2:parallelJob() 配置job,需要指定并行的flow步骤,先是parallelFlow1然后是parallelFlow2 , 2个步骤间使用**.split(new SimpleAsyncTaskExecutor())** 隔开,表示线程池开启2个线程,分别处理parallelFlow1, parallelFlow2 2个步骤。

12.3 分区步骤

分区:有划分,区分意思,在SpringBatch 分区步骤讲的是给执行步骤区分上下级。

上级: 主步骤(Master Step)

下级: 从步骤–工作步骤(Work Step)

主步骤是领导,不用干活,负责管理从步骤,从步骤是下属,必须干活。

一个主步骤下辖管理多个从步骤。

注意: 从步骤,不管多小,它也一个完整的Spring Batch 步骤,负责各自的读入、处理、写入等

分区步骤结构图

image-20221207172733375

分区步骤一般用于海量数据的处理上,其采用是分治思想。主步骤将大的数据划分多个小的数据集,然后开启多个从步骤,要求每个从步骤负责一个数据集。当所有从步骤处理结束,整作业流程才算结束。

分区器

主步骤核心组件,负责数据分区,将完整的数据拆解成多个数据集,然后指派给从步骤,让其执行。

拆分规则由Partitioner分区器接口定制,默认的实现类:MultiResourcePartitioner

public interface Partitioner {
	Map<String, ExecutionContext> partition(int gridSize);
}

Partitioner 接口只有唯一的方法:partition 参数gridSize表示要分区的大小,可以理解为要开启多个worker步骤,返回值是一个Map, 其中key:worker步骤名称, value:worker步骤启动需要参数值,一般包含分区元数据,比如起始位置,数据量等。

分区处理器

主步骤核心组件,统一管理work 步骤, 并给work步骤指派任务。

管理规则由PartitionHandler 接口定义,默认的实现类:TaskExecutorPartitionHandler

需求:下面几个文件将数据读入内存

分析:

image-20230114212150401

步骤1:准备数据

user1-10.txt

1#dafei#18
2#dafei#18
3#dafei#18
4#dafei#18
5#dafei#18
6#dafei#18
7#dafei#18
8#dafei#18
9#dafei#18
10#dafei#18

user11-20.txt

11#dafei#18
12#dafei#18
13#dafei#18
14#dafei#18
15#dafei#18
16#dafei#18
17#dafei#18
18#dafei#18
19#dafei#18
20#dafei#18

user21-30.txt

21#dafei#18
22#dafei#18
23#dafei#18
24#dafei#18
25#dafei#18
26#dafei#18
27#dafei#18
28#dafei#18
29#dafei#18
30#dafei#18

user31-40.txt

31#dafei#18
32#dafei#18
33#dafei#18
34#dafei#18
35#dafei#18
36#dafei#18
37#dafei#18
38#dafei#18
39#dafei#18
40#dafei#18

user41-50.txt

41#dafei#18
42#dafei#18
43#dafei#18
44#dafei#18
45#dafei#18
46#dafei#18
47#dafei#18
48#dafei#18
49#dafei#18
50#dafei#18

步骤2:准备实体类

@Getter
@Setter
@ToString
public class User {
    private Long id;
    private String name;
    private int age;
}

步骤3:配置分区逻辑

import org.springframework.batch.core.partition.support.Partitioner;
import org.springframework.batch.item.ExecutionContext;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

//用户文件读取分区器
//作用: 指定从步骤名称 + 配置从步骤需要上下文环境
public class UserPartitioner implements Partitioner {
    
    int begin = 1;
    
    int end = 10;
    
    int range = 10;
    
    String text = "user%s-%s.txt";  //名字规则
    
    //map: key:从步骤名称  value: 从步骤上下文环境
    
    //gridSize : 从步骤个数---当前是5
    
    //逻辑:
    //	定义从步骤1---关联上下文环境---指定要处理文件名:file: user1-10.txt
    //	定义从步骤2---关联上下文环境---指定要处理文件名:file: user11-20.txt
    //  ...
    //	定义从步骤5---关联上下文环境---指定要处理文件名:file: user41-50.txt
    @Override
    public Map<String, ExecutionContext> partition(int gridSize) {
        
        Map<String, ExecutionContext> map = new HashMap<>();
        
        for (int i = 0; i < gridSize; i++) {
            
            ExecutionContext ex = new ExecutionContext();
            
            String name = String.format(text, begin, end);
            
            Resource resource = new ClassPathResource(name);
            
            // springbatch转换成,单纯使用对象时报错,可以使用的url字符串形式, spring会自动加载
            try {
                ex.putString("file",resource.getURL().toExternalForm());
            } catch (IOException e) {
                e.printStackTrace();
            }
            begin += range;
            end += range;
            
            map.put("user_partition_" + i, ex);
        }
        
        return map;
    }
}

步骤4:全部代码

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.TaskExecutorPartitionHandler;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.List;

@SpringBootApplication
@EnableBatchProcessing
public class PartStepJob {
    
    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    //编写从步骤--工作步骤--分区步骤--读操作
    @Bean
    @StepScope
    //多个从步骤共有同个itemreader组件, 不能写死操作文件资源,需要使用变量方式动态指定
    //@Value("#{stepExecutionContext['file']}")  从步骤的上下文路径中获取要读的资源文件对象
    //能实现的前提: 步骤上下文中必须有值,这些数据值是在 主步骤的分区器中设置。
    public FlatFileItemReader<User> itemReader(
        @Value("#{stepExecutionContext['file']}") Resource resource
    ){
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                //获取文件
                .resource(resource)
                //解析数据--指定解析器使用# 分割--默认是 ,号
                .delimited().delimiter("#")
                //按照 # 截取数据之后, 数据怎么命名
                .names("id", "name", "age")
                //封装数据--将读取的数据封装到对象:User对象
                .targetType(User.class)
                .build();
    }

    //编写从步骤--工作步骤--分区步骤--写操作
    @Bean
    public ItemWriter<User> itemWriter(){
        return new ItemWriter<User>() {
            @Override
            public void write(List<? extends User> items) throws Exception {
                items.forEach(System.err::println);
            }
        };
    }

    //编写从步骤--工作步骤--分区步骤-
    @Bean
    public Step workStep(){
        return  stepBuilderFactory.get("workStep")
                .<User, User>chunk(10)
                .reader(itemReader(null))
                .writer(itemWriter())
                .build();
    }

    //定义分区器
    @Bean
    public UserPartitioner userPartitioner(){
        return new UserPartitioner();
    }

    //定义分区处理器
    @Bean
    public PartitionHandler partitionHandler(){
        
        TaskExecutorPartitionHandler handler = new TaskExecutorPartitionHandler();
        
        //指定要创建分区步骤/从步骤有几个
        handler.setGridSize(5);
        
        //一个分区步骤/从步骤 是一个独立线程
        handler.setTaskExecutor(new SimpleAsyncTaskExecutor());
        
        //关联从步骤
        handler.setStep(workStep());
        
        try {
            handler.afterPropertiesSet();
        } catch (Exception e) {
            e.printStackTrace();
        }
        
        return handler;
    }

    //主步骤
    @Bean
    public Step masterStep(){
        return stepBuilderFactory.get("masterStep")
                .partitioner(workStep().getName(), userPartitioner())  // 分区器
                .partitionHandler(partitionHandler())                  // 分区处理器
                .build();
    }

    //定义作业
    @Bean
    public Job job(){
        return jobBuilderFactory.get("part-step-job")
                .start(masterStep())
                .build();
    }

    public static void main(String[] args) {
        SpringApplication.run(PartStepJob.class, args);
    }

}

结果:

User(id=31, name=dafei, age=18)
User(id=32, name=dafei, age=18)
User(id=33, name=dafei, age=18)
User(id=34, name=dafei, age=18)
User(id=35, name=dafei, age=18)
User(id=36, name=dafei, age=18)
User(id=37, name=dafei, age=18)
User(id=38, name=dafei, age=18)
User(id=39, name=dafei, age=18)
User(id=40, name=dafei, age=18)
User(id=41, name=dafei, age=18)
User(id=42, name=dafei, age=18)
User(id=43, name=dafei, age=18)
User(id=44, name=dafei, age=18)
User(id=45, name=dafei, age=18)
User(id=46, name=dafei, age=18)
User(id=47, name=dafei, age=18)
User(id=48, name=dafei, age=18)
User(id=49, name=dafei, age=18)
User(id=50, name=dafei, age=18)
User(id=21, name=dafei, age=18)
User(id=22, name=dafei, age=18)
User(id=23, name=dafei, age=18)
User(id=24, name=dafei, age=18)
User(id=25, name=dafei, age=18)
User(id=26, name=dafei, age=18)
User(id=27, name=dafei, age=18)
User(id=28, name=dafei, age=18)
User(id=29, name=dafei, age=18)
User(id=30, name=dafei, age=18)
User(id=1, name=dafei, age=18)
User(id=2, name=dafei, age=18)
User(id=3, name=dafei, age=18)
User(id=4, name=dafei, age=18)
User(id=5, name=dafei, age=18)
User(id=6, name=dafei, age=18)
User(id=7, name=dafei, age=18)
User(id=8, name=dafei, age=18)
User(id=9, name=dafei, age=18)
User(id=10, name=dafei, age=18)
User(id=11, name=dafei, age=18)
User(id=12, name=dafei, age=18)
User(id=13, name=dafei, age=18)
User(id=14, name=dafei, age=18)
User(id=15, name=dafei, age=18)
User(id=16, name=dafei, age=18)
User(id=17, name=dafei, age=18)
User(id=18, name=dafei, age=18)
User(id=19, name=dafei, age=18)
User(id=20, name=dafei, age=18)

解析:核心点

1>文件分区器:userPartitioner(), 分别加载5个文件进入到程序

2>文件分区处理器:userPartitionHandler() ,指定要分几个区,由谁来处理

3>分区从步骤:workStep() 指定读逻辑与写逻辑

4>分区文件读取:flatItemReader(),需要传入Resource对象,这个对象在userPartitioner()已经标记为file

5>分区主步骤:masterStep() ,指定分区名称与分区器,指定分区处理器

十三、综合案例

到这,整个Spring Batch 教程知识点就全部讲完了,接下来就使用一个综合案例将讲过核心知识串联起来,再来回顾一遍。

13.1 案例需求

1>先动态生成50w条员工数据,存放在employee.csv文件中

2>启动作业异步读取employee.csv文件,将读到数据写入到employee_temp表,要求记录读与写消耗时间

3>使用分区的方式将employee_temp表的数据读取并写入到employee表

13.2 分析

上面需求存在一定连贯性,为了操作简单,使用springMVC项目, 每一个需求对应一个接口:

1:发起 /dataInit 初始化50w数据进入employee.csv文件

​ 使用技术点:SpringMVC IO

2:发起**/csvToDB** 启动作业,将employee.csv 数据写入employee_temp表, 记录读与写消耗时间

​ 使用技术点:SpringMVC ItemReader JobExecutionListener

​ ItemWriter (如果使用Mybatis框架MyBatisBatchItemWriter/MyBatisPagingItemReaderReader)

3:发起**/dbToDB** 启动作业,将employee_temp数据写入employee表

​ 使用技术点:SpringMVC ItemReader partitioner

​ ItemWriter(如果使用Mybatis框架:MyBatisBatchItemWriter/MyBatisPagingItemReaderReader)

13.3 项目准备

步骤1:新开spring-batch-example

步骤2:导入依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.langfeiyes.ex</groupId>
    <artifactId>spring-batch-example</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
    </properties>

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.7.3</version>
        <relativePath/>
    </parent>


    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-batch</artifactId>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.12</version>
        </dependency>


        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>1.3.2</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
            <version>1.1.14</version>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-validation</artifactId>
        </dependency>
    </dependencies>

</project>

步骤3:配置文件

spring:
  datasource:
    username: root
    password: admin
    url: jdbc:mysql://127.0.0.1:3306/springbatch?serverTimezone=GMT%2B8&useSSL=false&allowPublicKeyRetrieval=true
    driver-class-name: com.mysql.cj.jdbc.Driver
    # 初始化数据库,文件在依赖jar包中
  sql:
    init:
      schema-locations: classpath:org/springframework/batch/core/schema-mysql.sql
      #mode: always
      mode: never
  batch:
    job:
      enabled: false

  druid:
    # 连接池配置
    #初始化连接池的连接数量 大小,最小,最大
    initial-size: 10
    min-idle: 10
    max-active: 20
    #配置获取连接等待超时的时间
    max-wait: 60000
    #配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
    time-between-eviction-runs-millis: 60000
    # 配置一个连接在池中最小生存的时间,单位是毫秒
    min-evictable-idle-time-millis: 30000
    validation-query: SELECT 1 FROM DUAL
    test-while-idle: true
    test-on-borrow: true
    test-on-return: false
    # 是否缓存preparedStatement,也就是PSCache  官方建议MySQL下建议关闭   个人建议如果想用SQL防火墙 建议打开
    pool-prepared-statements: false
    max-pool-prepared-statement-per-connection-size: 20

mybatis:
  configuration:
    default-executor-type: batch
  mapper-locations:
    - classpath:mapper/*.xml

job:
  data:
    path: D:/spri,ng-batch-example/
    
logging:
  level:
    com.zzhua: debug
  file:
    name: .logs/spring.log # 优先级比logging.path高

步骤4:建立employee表与employe_temp表

CREATE TABLE `employee` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `age` int DEFAULT NULL,
  `sex` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;
CREATE TABLE `employee_temp` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `age` int DEFAULT NULL,
  `sex` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

步骤5:建立基本代码体系-domain-mapper-service-controller-mapper.xml

image-20221209150325367

domain

@Setter
@Getter
@ToString
public class Employee {
    private Long id;
    private String name;
    private int age;
    private int sex;
}

mapper.java

public interface EmployeeMapper {

    /**
     * 添加
     */
    int save(Employee employee);
}

service接口

public interface IEmployeeService {
    /**
     * 保存
     */
    void save(Employee employee);
}

service接口实现类

@Service
public class EmployeeServiceImpl implements IEmployeeService {
    
    @Autowired
    private EmployeeMapper employeeMapper;
    
    @Override
    public void save(Employee employee) {
        employeeMapper.save(employee);
    }
}

启动类

@SpringBootApplication
@EnableBatchProcessing
@MapperScan("com.langfeiyes.exp.mapper")
public class App {

    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}

Mapper.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.langfeiyes.exp.mapper.EmployeeMapper">

    <resultMap id="BaseResultMap" type="com.langfeiyes.exp.domain.Employee">
        <result column="id" jdbcType="INTEGER" property="id" />
        <result column="name" jdbcType="VARCHAR" property="name" />
        <result column="age" jdbcType="VARCHAR" property="age" />
        <result column="sex" jdbcType="VARCHAR" property="sex" />
    </resultMap>


    <insert id="save" keyColumn="id" useGeneratedKeys="true" keyProperty="id">
        insert into employee(id, name, age, sex) values(#{id},#{name},#{age},#{sex})
    </insert>
</mapper>

13.4 需求一

需求:先动态生成50w条员工数据,存放再employee.csv文件中

步骤1:定义:DataInitController

@RestController
public class DataInitController {

    @Autowired
    private IEmployeeService employeeService;

    @GetMapping("/dataInit")
    public String dataInit() throws IOException {
        employeeService.dataInit();
        return "ok";
    }
}

步骤2:在IEmployeeService 添加dataInit 方法

public interface IEmployeeService {
    /**
     * 保存
     */
    void save(Employee employee);

    /**
     * 初始化数据:生成50w数据
     */
    void dataInit() throws IOException;
}

步骤3:在EmployeeServiceImpl 实现方法

@Service
public class EmployeeServiceImpl implements IEmployeeService {
    @Autowired
    private EmployeeMapper employeeMapper;
    @Override
    public void save(Employee employee) {
        employeeMapper.save(employee);
    }

    @Value("${job.data.path}")
    public String path;

    @Override
    public void dataInit() throws IOException {
        File file = new File(path, "employee.csv");
        if (file.exists()) {
            file.delete();
        }
        file.createNewFile();
        FileOutputStream out = new FileOutputStream(file);
        String txt = "";

        Random ageR = new Random();
        Random boolR = new Random();

        // 给文件中生产50万条数据
        long beginTime = System.currentTimeMillis();
        System.out.println("开始时间:【 " + beginTime + " 】");
        for (int i = 1; i <= 500000; i++) {
            if(i == 500000){
                txt = i+",dafei_"+ i +"," + ageR.nextInt(100) + "," + (boolR.nextBoolean()?1:0);
            }else{
                txt = i+",dafei_"+ i +"," + ageR.nextInt(100) + "," + (boolR.nextBoolean()?1:0) +"\n";
            }

            out.write(txt.getBytes());
            out.flush();
        }
        out.close();
        System.out.println("总共耗时:【 "+ (System.currentTimeMillis() - beginTime) + " 】毫秒");
    }
}

步骤4:访问http://localhost:8080/dataInit 生成数据。

image-20221209153946838

image-20221209154012225

13.5 需求二

需求:启动作业异步读取employee.csv文件,将读到数据写入到employee_temp表,要求记录读与写消耗时间

步骤1:修改IEmployeeService 接口

public interface IEmployeeService {
    /**
     * 保存
     */
    void save(Employee employee);

    /**
     * 初始化数据:生成50w数据
     */
    void dataInit() throws IOException;
    
    /**
     * 清空数据
     */
    void truncateAll();
    
    /**
     * 清空employee_temp数据
     */
    void truncateTemp();
}

步骤2:修改EmployeeServiceImpl

@Override
public void truncateAll() {
    employeeMapper.truncateAll();
}

@Override
public void truncateTemp() {
    employeeMapper.truncateTemp();
}

步骤3:修改IEmployeeMapper.java

public interface EmployeeMapper {

    /**
     * 添加
     */
    int save(Employee employee);

    /**
     * 添加临时表
     * @param employee
     * @return
     */
    int saveTemp(Employee employee);

    /**
     * 清空数据
     */
    void truncateAll();

    /**
     * 清空临时表数据
     */
    void truncateTemp();
}

步骤4:修改EmployeeMapper.xml

<insert id="saveTemp" keyColumn="id" useGeneratedKeys="true" keyProperty="id">
    insert into employee_temp(id, name, age, sex) values(#{id},#{name},#{age},#{sex})
</insert>

<delete id="truncateAll">
    truncate employee
</delete>

<delete id="truncateTemp">
    truncate employee_temp
</delete>

步骤5:在com.langfeiyes.exp.job.listener 包新建监听器,用于计算开始结束时间

import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobExecutionListener;


public class CsvToDBJobListener implements JobExecutionListener {

    @Override
    public void beforeJob(JobExecution jobExecution) {

        long begin = System.currentTimeMillis();

        jobExecution.getExecutionContext().putLong("begin", begin);

        System.err.println("----【CsvToDBJob开始时间:】---->"+begin);
    }

    @Override
    public void afterJob(JobExecution jobExecution) {

        long begin = jobExecution.getExecutionContext().getLong("begin");

        long end = System.currentTimeMillis();

        System.err.println("----【CsvToDBJob结束时间:】---->"+end);

        System.err.println("----【CsvToDBJob总耗时:】---->"+(end - begin));
    }
}

步骤6:在com.langfeiyes.exp.job.config包定义CsvToDBJobConfig配置类

import com.langfeiyes.exp.domain.Employee;
import com.langfeiyes.exp.job.listener.CsvToDBJobListener;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.batch.MyBatisBatchItemWriter;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.PathResource;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.io.File;

/**
 * 将数据从csv文件中读取,并写入数据库
 */
@Configuration
public class CsvToDBJobConfig {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;

    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private SqlSessionFactory sqlSessionFactory;

    @Value("${job.data.path}")
    private String path;

    // 定义itemReader -- 多线程异步读
    // 多线程读-读文件,使用FlatFileItemReader
    @Bean
    public FlatFileItemReader<Employee> cvsToDBItemReader(){
        FlatFileItemReader<Employee> reader = new FlatFileItemReaderBuilder<Employee>()
            .name("employeeCSVItemReader")
            .saveState(false) // 防止状态被覆盖(当使用多线程操作时,需要设置这个)
            .resource(new PathResource(
                		new File(path, "employee.csv").getAbsolutePath()
            		 )
            )
            .delimited()
            .names("id", "name", "age", "sex")
            .targetType(Employee.class)
            .build();

        return reader;
    }

    //数据库写-使用mybatis提供批处理读入
    @Bean
    public MyBatisBatchItemWriter<Employee> cvsToDBItemWriter(){
        
        MyBatisBatchItemWriter<Employee> itemWriter = new MyBatisBatchItemWriter<>();
        
        // 需要指定sqlsession工厂
        itemWriter.setSqlSessionFactory(sqlSessionFactory);
        
        // 指定要操作sql语句,路径id为:EmployeeMapper.xml定义的sql语句id
        itemWriter.setStatementId("com.langfeiyes.exp.mapper.EmployeeMapper.saveTemp");
        
        return itemWriter;
    }

    @Bean
    public Step csvToDBStep(){
        return stepBuilderFactory.get("csvToDBStep")
            // 每个块10000个 共50个块
            .<Employee, Employee>chunk(10000)  
            .reader(cvsToDBItemReader())
            .writer(cvsToDBItemWriter())
            // 多线程读写
            .taskExecutor(new SimpleAsyncTaskExecutor())  
            .build();

    }

    //job监听器
    @Bean
    public CsvToDBJobListener csvToDBJobListener(){
        return new CsvToDBJobListener();
    }

    @Bean
    public Job csvToDBJob(){
        return jobBuilderFactory.get("csvToDB-step-job")
            // 开始步骤
            .start(csvToDBStep())
            // 保证可以多次执行
            .incrementer(new RunIdIncrementer())
            // 监听器
            .listener(csvToDBJobListener())
            .build();

    }
}

步骤7:在com.langfeiyes.exp.controller 添加JobController

import com.langfeiyes.exp.service.IEmployeeService;
import org.springframework.batch.core.*;
import org.springframework.batch.core.explore.JobExplorer;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Date;

@RestController
public class JobController {

    @Autowired
    private IEmployeeService employeeService;

    @Autowired
    private JobLauncher jobLauncher;

    @Autowired
    private JobExplorer jobExplorer;

    @Autowired
    @Qualifier("csvToDBJob")
    private Job csvToDBJob;

    @GetMapping("/csvToDB")
    public String csvToDB() throws Exception {
        employeeService.truncateTemp(); //清空数据运行多次执行

        //需要多次执行,run.id 必须重写之前,再重构一个新的参数对象
        JobParameters jobParameters 
            = new JobParametersBuilder(new JobParameters(), jobExplorer)
                        .addLong("time", new Date().getTime())
                        .getNextJobParameters(csvToDBJob)
                        .toJobParameters();
        
        JobExecution run = jobLauncher.run(csvToDBJob, jobParameters);
        
        return run.getId().toString();
    }
}

步骤8:访问测试:http://localhost:8080/csvToDB

----CsvToDBJob开始时间:】---->1670575356773
----CsvToDBJob结束时间:】---->1670575510967
----CsvToDBJob总耗时:】---->154194

(注意,测试接口前,取消掉数据库中employee_temp表的id主键,然后调用接口,再查看数据库的数据,可以看到id的顺序是有点乱的-不是递增的,总共有500000条数据)

13.6 需求三

image-20250419225902324

需求:使用分区的方式将employee_temp表的数据读取并写入到employee表

步骤1:在com.langfeiyes.exp.job.config 包添加DBToDBJobConfig, 配置从数据库到数据库的作业

import com.langfeiyes.ex.domain.Employee;
import com.langfeiyes.ex.job.partitioner.DBToDBPartitioner;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.batch.MyBatisBatchItemWriter;
import org.mybatis.spring.batch.MyBatisPagingItemReader;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.TaskExecutorPartitionHandler;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.SimpleAsyncTaskExecutor;

import java.util.HashMap;
import java.util.Map;

/**
 * 配置分区作业
 * 将数据从employee_temp中读取,并写入employe 表
 */
@Configuration
public class DBToDBJobConfig {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;

    @Autowired
    private SqlSessionFactory sqlSessionFactory;

    //从步骤读数据--reader
    //存在问题: 有50从步骤, 50w条数据, 怎么分配
    //从步骤1: select * from employee_temp where id between 1 and 10000 limit offset, pageSize
    //从步骤2: select * from employee_temp where id between 10001 and 20000 limit offset, pageSize
    //从步骤50: select * from employee_temp where id between 490001 and 500000 limit offset, pageSize
    //reader组件定义必须指定操作数据: from  to  pageSize

    @Bean
    @StepScope
    public MyBatisPagingItemReader<Employee> dbToDBItemReader(
        @Value("#{stepExecutionContext[from]}")Integer from,
        @Value("#{stepExecutionContext[to]}")Integer to,
        @Value("#{stepExecutionContext[range]}")Integer range
    ){
        System.out.println("----------MyBatisPagingItemReader开始-----from: " + from + 
                           "-----to:" + to + 
                           "-----每片数量:" + range);
        MyBatisPagingItemReader<Employee> itemReader = new MyBatisPagingItemReader<>();
        itemReader.setSqlSessionFactory(sqlSessionFactory);
        itemReader.setPageSize(1000);  //约定每页显示1000条
        itemReader.setQueryId(
            "com.langfeiyes.ex.mapper.EmployeeMapper.selectTempForList"
        );
        //key: sql中条件参数, value: 条件值
        Map<String, Object> map = new HashMap<>();
        map.put("from", from);
        map.put("to", to);
        itemReader.setParameterValues(map);
        //from  // to  在 分区器中配置, 当前可以重上下文中获取
        return itemReader;

    }


    //从步骤写数据--writer
    @Bean
    public MyBatisBatchItemWriter<Employee> dbToDBItemWriter(){
        MyBatisBatchItemWriter<Employee> itemWriter = new MyBatisBatchItemWriter();
        //可以构建sqlsession类似jdbc connettion--可以执行sql语句类
        itemWriter.setSqlSessionFactory(sqlSessionFactory);
        //指定要执行save:Employee_temp操作sql语句,从EmployeeMapper.xml找id为saveTemp sql语句
        itemWriter.setStatementId("com.langfeiyes.ex.mapper.EmployeeMapper.save");
        return itemWriter;
    }

    //从步骤
    @Bean
    public Step workStep(){
        return stepBuilderFactory.get("workStep")
            .<Employee,Employee>chunk(1000)
            .reader(dbToDBItemReader(null, null,null))
            .writer(dbToDBItemWriter())
            .build();
    }

    //分区器
    @Bean
    public DBToDBPartitioner dbToDBPartitioner(){
        return new DBToDBPartitioner();
    }

    //分区处理器
    @Bean
    public PartitionHandler dbToDBPartitionHandler(){
        TaskExecutorPartitionHandler handler = new TaskExecutorPartitionHandler();

        handler.setGridSize(50);
        handler.setTaskExecutor(new SimpleAsyncTaskExecutor());
        handler.setStep(workStep());

        try {
            handler.afterPropertiesSet();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return handler;

    }

    //主步骤
    @Bean
    public Step masterStep(){
        return stepBuilderFactory.get("masterStep")
            .partitioner(workStep().getName(), dbToDBPartitioner())
            .partitionHandler(dbToDBPartitionHandler())
            .build();
    }
    //作业
    @Bean
    public Job dbToDBJob(){
        return jobBuilderFactory.get("dbToDB-step-job")
            .start(masterStep())
            .incrementer(new RunIdIncrementer())
            .build();
    }

}

步骤2:修改EmployeeMapper.xml

<select id="selectTempForList" resultMap="BaseResultMap">
    select * from employee_temp 
    where id between #{from} and #{to} limit #{_pagesize} OFFSET #{_skiprows}
</select>

步骤3:在com.langfeiyes.exp.job.partitioner 创建DBToDBPartitioner, 用于分区

import org.springframework.batch.core.partition.support.Partitioner;
import org.springframework.batch.item.ExecutionContext;

import java.util.HashMap;
import java.util.Map;


//db2db 分区器设置, 将从步骤需要的from, to range 3个设置到从步骤中上下文中
public class DBToDBPartitioner  implements Partitioner {
    
    @Override
    public Map<String, ExecutionContext> partition(int gridSize) {

        String text = "DBToDBPartitioner第%s分区开始:%s---结束:%s---数据量:%s";
        
        Map<String, ExecutionContext> map = new HashMap<>();
        
        int from = 1;
        int to = 10000;
        int range = 10000;

        for (int i = 0; i < gridSize; i++) {
            
            System.out.println(String.format(text, i, from, to, (to - from + 1)));

            ExecutionContext ex = new ExecutionContext();
            
            ex.putInt("from", from);
            ex.putInt("to", to);
            ex.putInt("range", range);

            to += range;
            from += range;

            map.put("partitioner_" + i, ex);
        }
        return map;
    }
}

步骤4:修改JobController 类

@GetMapping("/dbToDB")
public String dbToDB() throws Exception {
    employeeService.truncateAll();
    JobParameters jobParameters = new JobParametersBuilder(new JobParameters(),jobExplorer)
        .addLong("time", new Date().getTime())
        .getNextJobParameters(dbToDBJob).toJobParameters();
    JobExecution run = jobLauncher.run(dbToDBJob, jobParameters);
    return run.getId().toString();
}

步骤8:访问:http://localhost:8080/dbToDB

(在调用接口前,确保employee_temp表中的数据是按照id主键自增往上递增的,这样可以使用这里的sql语句)

----DBToDBPartitioner---0分区-----开始:1---结束:10000---数据量:10000--------------
----DBToDBPartitioner---1分区-----开始:10001---结束:20000---数据量:10000--------------
----DBToDBPartitioner---2分区-----开始:20001---结束:30000---数据量:10000--------------
----DBToDBPartitioner---3分区-----开始:30001---结束:40000---数据量:10000--------------
----DBToDBPartitioner---4分区-----开始:40001---结束:50000---数据量:10000--------------
----DBToDBPartitioner---5分区-----开始:50001---结束:60000---数据量:10000--------------
----DBToDBPartitioner---6分区-----开始:60001---结束:70000---数据量:10000--------------
----DBToDBPartitioner---7分区-----开始:70001---结束:80000---数据量:10000--------------
----DBToDBPartitioner---8分区-----开始:80001---结束:90000---数据量:10000--------------
----DBToDBPartitioner---9分区-----开始:90001---结束:100000---数据量:10000--------------
----DBToDBPartitioner---10分区-----开始:100001---结束:110000---数据量:10000--------------
----DBToDBPartitioner---11分区-----开始:110001---结束:120000---数据量:10000--------------
----DBToDBPartitioner---12分区-----开始:120001---结束:130000---数据量:10000--------------
----DBToDBPartitioner---13分区-----开始:130001---结束:140000---数据量:10000--------------
----DBToDBPartitioner---14分区-----开始:140001---结束:150000---数据量:10000--------------
----DBToDBPartitioner---15分区-----开始:150001---结束:160000---数据量:10000--------------
----DBToDBPartitioner---16分区-----开始:160001---结束:170000---数据量:10000--------------
----DBToDBPartitioner---17分区-----开始:170001---结束:180000---数据量:10000--------------
----DBToDBPartitioner---18分区-----开始:180001---结束:190000---数据量:10000--------------
----DBToDBPartitioner---19分区-----开始:190001---结束:200000---数据量:10000--------------
----DBToDBPartitioner---20分区-----开始:200001---结束:210000---数据量:10000--------------
----DBToDBPartitioner---21分区-----开始:210001---结束:220000---数据量:10000--------------
----DBToDBPartitioner---22分区-----开始:220001---结束:230000---数据量:10000--------------
----DBToDBPartitioner---23分区-----开始:230001---结束:240000---数据量:10000--------------
----DBToDBPartitioner---24分区-----开始:240001---结束:250000---数据量:10000--------------
----DBToDBPartitioner---25分区-----开始:250001---结束:260000---数据量:10000--------------
----DBToDBPartitioner---26分区-----开始:260001---结束:270000---数据量:10000--------------
----DBToDBPartitioner---27分区-----开始:270001---结束:280000---数据量:10000--------------
----DBToDBPartitioner---28分区-----开始:280001---结束:290000---数据量:10000--------------
----DBToDBPartitioner---29分区-----开始:290001---结束:300000---数据量:10000--------------
----DBToDBPartitioner---30分区-----开始:300001---结束:310000---数据量:10000--------------
----DBToDBPartitioner---31分区-----开始:310001---结束:320000---数据量:10000--------------
----DBToDBPartitioner---32分区-----开始:320001---结束:330000---数据量:10000--------------
----DBToDBPartitioner---33分区-----开始:330001---结束:340000---数据量:10000--------------
----DBToDBPartitioner---34分区-----开始:340001---结束:350000---数据量:10000--------------
----DBToDBPartitioner---35分区-----开始:350001---结束:360000---数据量:10000--------------
----DBToDBPartitioner---36分区-----开始:360001---结束:370000---数据量:10000--------------
----DBToDBPartitioner---37分区-----开始:370001---结束:380000---数据量:10000--------------
----DBToDBPartitioner---38分区-----开始:380001---结束:390000---数据量:10000--------------
----DBToDBPartitioner---39分区-----开始:390001---结束:400000---数据量:10000--------------
----DBToDBPartitioner---40分区-----开始:400001---结束:410000---数据量:10000--------------
----DBToDBPartitioner---41分区-----开始:410001---结束:420000---数据量:10000--------------
----DBToDBPartitioner---42分区-----开始:420001---结束:430000---数据量:10000--------------
----DBToDBPartitioner---43分区-----开始:430001---结束:440000---数据量:10000--------------
----DBToDBPartitioner---44分区-----开始:440001---结束:450000---数据量:10000--------------
----DBToDBPartitioner---45分区-----开始:450001---结束:460000---数据量:10000--------------
----DBToDBPartitioner---46分区-----开始:460001---结束:470000---数据量:10000--------------
----DBToDBPartitioner---47分区-----开始:470001---结束:480000---数据量:10000--------------
----DBToDBPartitioner---48分区-----开始:480001---结束:490000---数据量:10000--------------
----DBToDBPartitioner---49分区-----开始:490001---结束:500000---数据量:10000--------------
----------MyBatisPagingItemReader开始-----from: 250001  -----to:260000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 290001  -----to:300000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 80001  -----to:90000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 410001  -----to:420000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 360001  -----to:370000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 230001  -----to:240000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 40001  -----to:50000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 340001  -----to:350000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 450001  -----to:460000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 110001  -----to:120000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 350001  -----to:360000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 50001  -----to:60000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 430001  -----to:440000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 20001  -----to:30000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 120001  -----to:130000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 190001  -----to:200000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 100001  -----to:110000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 470001  -----to:480000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 60001  -----to:70000  -----每片数量:10000
----------MyBatisPagingItemReader开始-----from: 200001  -----to:210000  -----每片数量:10000

到这,案例就全部结束了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2338640.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

动态规划算法的欢乐密码(一):斐波那契数模型

专栏&#xff1a;算法的魔法世界 个人主页&#xff1a;手握风云 目录 一、动态规划 二、例题讲解 2.1. 第 N 个泰波那契数 2.2. 三步问题 2.3. 使用最小花费爬楼梯 2.4. 解码方法 一、动态规划 动态规划是一种将复杂问题分解为更小的子问题&#xff0c;并利用子问题的解来…

Echarts柱状图斜线环纹(图形的贴花图案)

单独设置 <!--此示例下载自 https://echarts.apache.org/examples/zh/editor.html?cbar-stack&codePYBwLglsB2AEC8sDeAoWszGAG0iAXMmuhgE4QDmFApqYQOQCGAHhAM70A0x6L7ACsAjQwtQqhIkwATxDUGbABaMAJsADu9HrAC-xHd3TZqNaCvEHiFcuaKTjAMzAMAzAFIu28hUXPY9ABYPQxIAI2AwTABbV…

2025.04.19【Spider】| 蜘蛛图绘制技巧精解

Basic multi-group radar chart Start with a basic version, learn how to format your input dataset Radar chart with ggradar A Spider chart made using the ggradar package and a lot of customization.A work by Tuo Wang 文章目录 Basic multi-group radar chartRa…

【Linux】深入理解Linux文件系统:从C接口到内核设计哲学

文章目录 前言一、C语言中的文件接口1. 文件指针&#xff08;句柄&#xff09;FILE*以写方式打开文件&#xff0c;若文件不存在会新建一个文件W写入方式&#xff0c;在打开文件之前都会将文件内容全部清空追加写方式&#xff0c;其用法与写方法一致&#xff0c;不同在于a方法可…

基于尚硅谷FreeRTOS视频笔记——15—系统配制文件说明与数据规范

目录 配置函数 INCLUDE函数 config函数 数据类型 命名规范 函数与宏 配置函数 官网上可以查找 最核心的就是 config和INCLUDE INCLUDE函数 这些就是裁剪的函数 它们使用一个ifndef。如果定义了&#xff0c;就如果定义了这个宏定义&#xff0c;那么代码就生效。 通过ifn…

Linux网络编程 深入解析TFTP协议:基于UDP的文件传输实战

知识点1【TFTP的概述】 学习通信的基本&#xff1a;通信协议&#xff08;具体发送上面样的报文&#xff09;、通信流程&#xff08;按照什么步骤发送&#xff09; 1、TFTP的概述 tftp&#xff1a;简单文件传输协议&#xff0c;**基于UDP&#xff0c;**不进行用户有效性验证 …

c# MES生产进度看板,报警看板 热流道行业可用实时看生产进度

MES生产进度看板&#xff0c;报警看板 热流道行业可用实时看生产进度 背景 本软件是给宁波热流道行业客户开发的生产电子看板软件系统 功能 1.录入工艺流程图&#xff08;途程图&#xff09;由多个站别组成。可以手动设置每个工艺站点完成百分比。 2.可以看生成到哪个工…

初识Redis · C++客户端string

目录 前言&#xff1a; string的API使用 set get&#xff1a; expire: NX XX: mset,mget&#xff1a; getrange setrange: incr decr 前言&#xff1a; 在前文&#xff0c;我们已经学习了Redis的定制化客户端怎么来的&#xff0c;以及如何配置好Redis定制化客户端&…

华硕原厂系统枪神9/9p超竟版-WIN11原装开箱出厂系统安装

华硕原厂系统枪神9/9p超竟版-WIN11-24H2-专业工作站版本安装可带F12-ASUSRecovery恢复功能 适用机型&#xff1a; G635LX、G635LW、G835LX、G835LW、G615LW、G615LP、G615LM、G615LH G815LW、G815LP、G815LM、G815LH、G635LR、G835LR、G615LR、G815LR 远程恢复安装&#xff…

CF1016赛后总结

文章目录 前言T1:Ideal GeneratorT2&#xff1a;Expensive NumberT3:Simple RepetitionT4&#xff1a;Skibidi TableT5:Min Max MEXT6:Hackers and Neural NetworksT7:Shorten the Array 前言 由于最近在半期考试&#xff0c;更新稍微晚了一点&#xff0c;还望大家见谅 &#…

QT聊天项目DAY06

1.从git上同步项目 编译测试&#xff0c;编译通过 Post请求测试 测试成功 2. email is 打印有问题&#xff0c;检查 解析结果是存储在jsonResult中的&#xff0c;修改 3. 客户端实现Post验证码请求 3.1 同步Qt客户端项目 检查QT版本&#xff0c;由于我在公司用的还是QT5.12.9…

GNU,GDB,GCC,G++是什么?与其他编译器又有什么关系?

文章目录 前言1. GNU和他的工具1.1 gcc与g1.2 gdb 2.Windows的Mingw/MSVC3.LLVM的clang/clang4.Make/CMake 前言 在开始之前我们先放一段Hello World&#xff1a;hello.c #include <stdio.h>int main() {printf("Hello World");return 0; }然后就是一段老生常…

笔记整理五

STP生成树 stp生成树是用于解决二层环路问题的协议。 二层环路为有以下三种&#xff1a; 1.广播风暴 2.MAC地址的偏移&#xff08;每一次循环&#xff0c;都会导致交换机来回刷新MAC地址表记录&#xff09; 3.多帧复制 stp生成树&#xff1a;需要将原本的环型拓扑结构转换…

奥比中光tof相机开发学习笔记

针对奥比中光 tof相机&#xff0c;官方提供的资料如下ProcessOn Mindmap|思维导图 Orbbec SDK Python Wrapper基于Orbbec SDK进行设计封装&#xff0c;主要实现数据流接收&#xff0c;设备指令控制。下面就其开发适配进行如下总结&#xff1a; &#xff08;1&#xff09;系统配…

【面试向】点积与注意力机制,逐步编码理解自注意力机制

点积&#xff08;dot product&#xff09;两个向量点积的数学公式点积&#xff08;dot product&#xff09;与 Attention 注意力机制&#xff08;Attention&#xff09;注意力机制的核心思想注意力机制中的缩放点积自注意力机制中&#xff0c;谁注意谁&#xff1f; 逐步编码理解…

一个 CTO 的深度思考

今天和一些同事聊了一会&#xff0c;以下是我的观点 我的观点&#xff0c;成年人只能筛选&#xff0c;不能培养在组织中&#xff0c;应该永远向有结果的人看齐。不能当他站出来讲话的时候&#xff0c;大家还要讨论讨论&#xff0c;他虽然拿到结果了&#xff0c;但是他就是有一…

SQL通用语法和注释,SQL语句分类(DDL,DML,DQL,DCL)及案例

目录 SQL通用语法和注释 SQL语句分类&#xff08;DDL&#xff0c;DML&#xff0c;DQL&#xff0c;DCL&#xff0c;TPL&#xff0c;CCL&#xff09; DDL&#xff08;数据定义语言&#xff09; 数据库操作 查询&#xff08;SHOW、SELECT&#xff09; 创建&#xff08;CREAT…

AUTOSAR图解==>AUTOSAR_SWS_KeyManager

AUTOSAR KeyManager详细分析 AUTOSAR 4.4.0 版本密钥与证书管理模块技术分析 目录 1. 概述2. KeyManager架构 2.1 KeyManager在AUTOSAR架构中的位置2.2 架构说明 3. KeyManager模块结构 3.1 模块组件详解3.2 配置项说明 4. KeyManager证书验证流程 4.1 证书验证流程分析 5. Ke…

Jsp技术入门指南【七】JSP动作讲解

Jsp技术入门指南【七】JSP动作讲解 前言一、什么是JSP动作&#xff1f;二、核心JSP动作详解1. jsp:include&#xff1a;动态包含其他页面与<% include %>的区别 2. jsp:forward&#xff1a;请求转发到另一个页面3. jsp:param&#xff1a;为动作传递参数4. jsp:useBean&am…

10软件测试需求分析案例-查询学习信息

用户登录系统后&#xff0c;进入查询学生信息界面&#xff0c;输入查询字段值&#xff0c;点击查询按钮后&#xff0c;展示查询到的学生信息&#xff0c;可以重新输入字段值进行查询。 查询学生信息属于学生信息管理的子菜单&#xff0c;可以根据学号、姓名、性别查询。老师登录…