深入浅出SPI通信协议与STM32实战应用(W25Q128驱动)(实战部分)

news2025/5/13 2:01:27

1. W25Q128简介

W25Q128 是Winbond推出的128M-bit(16MB)SPI接口Flash存储器,支持标准SPI、Dual-SPI和Quad-SPI模式。关键特性:

  • 工作电压:2.7V~3.6V
  • 分页结构:256页/块,每块16KB,共1024块
  • 支持页编程(256字节/页)
  • 擦除操作支持:扇区擦除(4KB)、块擦除(32/64KB)、全片擦除
  • 最高104MHz时钟频率
  • 超过10万次擦写周期
    在这里插入图片描述

1.1 W25Q128存储架构

W25Q128存储器采用分级存储架构,总容量为16MB(128Mbit)。其物理存储结构按以下层级划分:

  • 顶层划分:256个存储块(Block),每块容量64KB
  • 块内结构:每个存储块包含16个扇区(Sector),每扇区容量4KB
  • 扇区组成:每个扇区细分为16个存储页(Page),每页容量256字节

该存储器的擦除机制具有以下特性:

  • 最小擦除单位为单个扇区(4KB)
  • 执行擦除操作时必须完整处理整个扇区
  • 系统需预置4KB对齐的缓冲区,以满足物理擦除粒度要求在这里插入图片描述

1.2 W25Q128常用指令

W25Q128 有非常多的指令,我们介绍几个常用的指令。

指令(HEX)名称 作用
0x06写使能写入数据/擦除之前,必须先发送该指令
0x05读 SR1判定 FLASH 是否处于空闲状态,擦除用
0x03读数据读取数据
0x02页写写入数据,最多写256字节
0x20扇区擦除扇区擦除指令,最小擦除单位

1.3 W25Q128 操作时序详解

  1. 写使能(06h)- 指令功能‌:执行编程/擦除操作的必要使能信号
    • 操作流程:
      ① CS引脚置低(通信起始)
      ② 发送1字节指令码06h(MSB先发)
      ③ CS引脚置高(通信终止)
    • 状态影响‌:WEL位(SR1)置1,有效时间约50ms

  1. 状态寄存器读取(05h)
    • 指令格式‌:
      ┌──────┬─────────────┐
      | 指令码 | 响应数据(持续可读) |
      └──────┴─────────────┘
    • 操作时序**‌:
      ① CS置低 → 发送05h → 连续读取SR1 → CS置高‌
    • 技术要点‌:
      BUSY位(SR1)监控:0=空闲,1=操作中
      支持全双工SPI模式(MOSI/MISO同步传输)

  1. 数据读取(03h)
    • 指令结构‌:
      ┌──────┬──────────┬─────────┐
      | 03h | 24bit地址 | 数据流(≥1字节) |
      └──────┴──────────┴─────────┘
    • 执行步骤‌:
      1. 起始地址对齐(按页边界自动递增)
      2. 单次读取最大长度:256字节(单页容量)
      3. 跨页读取需重新发送地址指令

  1. 页编程(02h)
    • 技术限制‌:
      • 目标区域必须处于擦除状态(全FFh)
      • 单次写入跨度≤256字节(禁止跨页写入)
    • 操作序列‌:
      [CS↓] → 02h → A23-A0 → Data_1~Data_n → [CS↑]
    • 物理特性‌:
      实际编程时间约0.7-1.2ms(需BUSY状态轮询)

  1. 扇区擦除(20h)
    • 约束条件‌:
      • 擦除粒度:4KB(地址自动对齐到扇区起始)
      • 擦除后状态:全FFh(电平=1)
    • 时序流程‌:
      [CS↓] → 20h → 目标地址(A23-A0) → [CS↑]
    • 耗时范围‌:
      典型值400ms(温度25℃),最大600ms

2. 硬件连接

这篇文章,使用的是W25Q128模块,W25Q128 的模块各个厂家做的各有不同,只是长得不一样而已,使用方式、引脚都是一样的。
通过产品手册如下:在这里插入图片描述

STM32F103C8T6W25Q128 接线方式:

STM32引脚W25Q128引脚功能
PA5CLKSPI时钟
PA6MISO主机输入
PA7MOSI主机输出
PA4CS片选信号
3.3VVCC电源
GNDGND

注意:CS引脚需通过GPIO控制,不可固定接低电平

3. 代码实现

在这里插入图片描述

3.1 SPI及GPIO初始化

在进行初始化时, 我们需要查看参考手册:在这里插入图片描述
按照手册和实际情况进行GPIO口的配置

SPI_HandleTypeDef spi_handle = {0};
void w25q128_spi_init(void)
{
    spi_handle.Instance = SPI1;
    spi_handle.Init.Mode = SPI_MODE_MASTER;
    spi_handle.Init.Direction = SPI_DIRECTION_2LINES;
    spi_handle.Init.DataSize = SPI_DATASIZE_8BIT;
    spi_handle.Init.CLKPolarity = SPI_POLARITY_LOW;              /* CPOL = 0 */
    spi_handle.Init.CLKPhase = SPI_PHASE_1EDGE;                  /* CPHA = 0 */
    spi_handle.Init.NSS = SPI_NSS_SOFT;
    spi_handle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
    spi_handle.Init.FirstBit = SPI_FIRSTBIT_MSB;
    spi_handle.Init.TIMode = SPI_TIMODE_DISABLE;
    spi_handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
    spi_handle.Init.CRCPolynomial = 7;
    HAL_SPI_Init(&spi_handle);
}

void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
{
    if(hspi->Instance == SPI1)
    {
        GPIO_InitTypeDef gpio_initstruct;
        //打开时钟
        __HAL_RCC_GPIOA_CLK_ENABLE();                           // 使能GPIOB时钟
        __HAL_RCC_SPI1_CLK_ENABLE();
        
        //调用GPIO初始化函数
        gpio_initstruct.Pin = GPIO_PIN_4;          
        gpio_initstruct.Mode = GPIO_MODE_OUTPUT_PP;           
        gpio_initstruct.Pull = GPIO_PULLUP;                    
        gpio_initstruct.Speed = GPIO_SPEED_FREQ_HIGH;          
        HAL_GPIO_Init(GPIOA, &gpio_initstruct);
        
        gpio_initstruct.Pin = GPIO_PIN_5 | GPIO_PIN_7;          
        gpio_initstruct.Mode = GPIO_MODE_AF_PP;           
        HAL_GPIO_Init(GPIOA, &gpio_initstruct);
        
        gpio_initstruct.Pin = GPIO_PIN_6;          
        gpio_initstruct.Mode = GPIO_MODE_INPUT;           
        HAL_GPIO_Init(GPIOA, &gpio_initstruct);
    }
}

3.2 W25Q128驱动函数

w251128.c

// 交换一个字节
uint8_t w25q128_spi_swap_byte(uint8_t data)
{
    uint8_t recv_data = 0;
    HAL_SPI_TransmitReceive(&spi_handle, &data, &recv_data, 1, 1000);
    return recv_data;
}

// 初始化:
void w25q128_init(void)
{
    w25q128_spi_init();
}

// 读取iD值
uint16_t w25q128_read_id(void)
{
    uint16_t device_id = 0;
    W25Q128_CS(0);
    
    w25q128_spi_swap_byte(FLASH_ManufactDeviceID);
    w25q128_spi_swap_byte(0x00);
    w25q128_spi_swap_byte(0x00);
    w25q128_spi_swap_byte(0x00);
    device_id = w25q128_spi_swap_byte(FLASH_DummyByte) << 8;
    device_id |= w25q128_spi_swap_byte(FLASH_DummyByte);
    
    W25Q128_CS(1);
    return device_id;
}

// 写使能

void w25q128_writ_enable(void)
{
    W25Q128_CS(0);
    w25q128_spi_swap_byte(FLASH_WriteEnable);
    W25Q128_CS(1);
}

// 读取状态寄存器1
uint8_t w25q128_read_sr1(void)
{
    uint8_t recv_data = 0;
    
    W25Q128_CS(0);
    w25q128_spi_swap_byte(FLASH_ReadStatusReg1);
    recv_data = w25q128_spi_swap_byte(FLASH_DummyByte);
    W25Q128_CS(1);
    
    return recv_data;
}


// 等待BUSY
void w25q128_wait_busy(void)
{
    while((w25q128_read_sr1() & 0x01) == 0x01);
}
// 发送地址
void w25q128_send_address(uint32_t address)
{
    w25q128_spi_swap_byte(address >> 16);
    w25q128_spi_swap_byte(address >> 8);
    w25q128_spi_swap_byte(address);
}
// 读取数据
void w25q128_read_data(uint32_t address, uint8_t *data, uint32_t size)
{
    uint32_t i = 0;
    W25Q128_CS(0);
    w25q128_spi_swap_byte(FLASH_ReadData);
    w25q128_send_address(address);
    
    for(i = 0; i < size; i++)
        data[i] = w25q128_spi_swap_byte(FLASH_DummyByte);
    W25Q128_CS(1);
}

// 页写
void w25q128_write_page(uint32_t address, uint8_t *data, uint16_t size)
{
    uint16_t i = 0;
    w25q128_writ_enable();
    
    W25Q128_CS(0);
    w25q128_spi_swap_byte(FLASH_PageProgram);
    w25q128_send_address(address);
    
    for(i = 0; i < size; i++)
        w25q128_spi_swap_byte(data[i]);
    
    W25Q128_CS(1);
    //等待空闲
    w25q128_wait_busy();
}

// 擦除
void w25q128_erase_sector(uint32_t address)
{
    //写使能
    w25q128_writ_enable();
    //等待空闲
    w25q128_wait_busy();
    //拉低片选
    W25Q128_CS(0);
    //发送扇区擦除指令
    w25q128_spi_swap_byte(FLASH_SectorErase);
    //发送地址
    w25q128_send_address(address);
    //拉高片选
    W25Q128_CS(1);
    //等待空闲
    w25q128_wait_busy();
}

w25q128.h
#ifndef __W25Q128_H__
#define __W25Q128_H__

#include "sys.h"

#define W25Q128_CS(x)   do{ x ? \
                                HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET): \
                                HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); \
                        }while(0)

/* 指令表 */
#define FLASH_ManufactDeviceID                  0x90
#define FLASH_WriteEnable                       0x06
#define FLASH_ReadStatusReg1                    0x05
#define FLASH_ReadData                          0x03
#define FLASH_PageProgram                       0x02
#define FLASH_SectorErase                       0x20
#define FLASH_DummyByte                         0xFF

void w25q128_init(void);
uint16_t w25q128_read_id(void);
void w25q128_read_data(uint32_t address, uint8_t *data, uint32_t size);
void w25q128_write_page(uint32_t address, uint8_t *data, uint16_t size);
void w25q128_erase_sector(uint32_t address);

#endif

3.3 使用示例

#include "sys.h"
#include "delay.h"
#include "led.h"
#include "uart1.h"
#include "w25q128.h"

uint8_t data_write[4] = {0xAA, 0xBB, 0xCC, 0xDD};
uint8_t data_read[4] = {0};
int main(void)
{
    HAL_Init();                         /* 初始化HAL库 */
    stm32_clock_init(RCC_PLL_MUL9);     /* 设置时钟, 72Mhz */
    led_init();                         /* 初始化LED灯 */
    uart1_init(115200);
    w25q128_init();
    printf("hello world!\r\n");
    
    uint16_t device_id = w25q128_read_id();
    printf("device id: %X\r\n", device_id);

//    w25q128_erase_sector(0x000000);
//    w25q128_write_page(0x000000, data_write, 4);
    w25q128_read_data(0x000000, data_read, 4);
    
    printf("data read: %X, %X, %X, %X\r\n", data_read[0], data_read[1], data_read[2], data_read[3]);
    while(1)
    { 

    }
}

4. 注意事项

  1. 擦除操作必需:Flash写入前必须擦除对应区域
  2. 页边界限制:单次写入不可跨页(每页256字节)
  3. 时钟配置:确保SPI时钟不超过芯片规格(建议初始使用较低频率)
  4. 状态检测:重要操作后需检查BUSY位
  5. 电源稳定:Flash操作期间需保持3.3V稳定

5. 常见问题排查

  • 无法读取ID:检查SPI模式(CPOL=0/CPHA=0),确认CS信号时序
  • 写入失败:确保已执行写使能命令,检查电源电压
  • 数据错误:注意地址对齐,排除SPI时钟干扰

完整工程代码可在Gitee获取:https://gitee.com/bad-lemon/mcu-development-record.git


实现效果:通过上述代码可实现W25Q128的读写操作,实测写入速度可达600KB/s,读取速度1.2MB/s(SPI时钟18MHz)。该方案适用于需要大容量非易失存储的物联网设备、数据采集系统等场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2332104.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端知识点---闭包(javascript)

文章目录 1.怎么理解闭包?2.闭包的特点3.闭包的作用?4 闭包注意事项&#xff1a;5 形象理解6 闭包的应用 1.怎么理解闭包? 函数里面包着另一个函数&#xff0c;并且内部函数可以访问外部函数的变量。 <script> function box() {//周围状态&#xff08;外部函数中定义的…

Java 泛型的逆变与协变:深入理解类型安全与灵活性

泛型是 Java 中强大的特性之一&#xff0c;它提供了类型安全的集合操作。然而&#xff0c;泛型的类型关系&#xff08;如逆变与协变&#xff09;常常让人感到困惑。 本文将深入探讨 Java 泛型中的逆变与协变&#xff0c;帮助你更好地理解其原理和应用场景。 一、什么是协变与…

多线程(进阶)(内涵面试题)

目录 一、常见的锁策略 1. 悲观锁 vs 乐观锁 2. 重量级锁 vs 轻量级锁 3. 挂起等待锁 vs 自旋锁 4. 普通互斥锁 vs 读写锁 5. 可重入锁 vs 不可重入锁 6. 公平锁 vs 非公平锁 7. 面试题 二、synchronized的原理 1. 基本特点 2. 加锁工作过程 1&#xff09;偏向锁&am…

蓝桥杯补题

方法技巧&#xff1a; 1.进行循环暴力骗分&#xff0c;然后每一层的初始进行判断&#xff0c;如果已经不满足题意了&#xff0c;那么久直接continue&#xff0c;后面的循环就不用浪费时间了。我们可以把题目所给的等式&#xff0c;比如说有四个未知量&#xff0c;那么我们可以用…

【MySQL篇】mysqlpump和mysqldump参数区别总汇

&#x1f4ab;《博主主页》&#xff1a;奈斯DB-CSDN博客 &#x1f525;《擅长领域》&#xff1a;擅长阿里云AnalyticDB for MySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控&#xff1b;并对SQLserver、NoSQL(MongoDB)有了解 &#x1f496;如果觉得文章对你有所帮…

SQL:DDL(数据定义语言)和DML(数据操作语言)

目录 什么是SQL&#xff1f; 1. DDL&#xff08;Data Definition Language&#xff0c;数据定义语言&#xff09; 2. DML&#xff08;Data Manipulation Language&#xff0c;数据操作语言&#xff09; DDL和DML的区别 什么是SQL&#xff1f; SQL&#xff08;Structured …

神舟平板电脑怎么样?平板电脑能当电脑用吗?

在如今的数码产品市场上&#xff0c;神舟平板电脑会拥有独特的优势&#xff0c;其中比较受到大家关注的就是神舟PCpad为例&#xff0c;无论是设计还是规格也会有很多的亮点&#xff0c;那么是不是可以直接当成电脑一起来使用呢&#xff1f; 这款平板电脑就会配备10.1英寸显示屏…

【力扣hot100题】(075)数据流的中位数

一开始只建立了一个优先队列&#xff0c;每次查询中位数时都要遍历一遍于是喜提时间超限&#xff0c;看了答案才恍然大悟原来还有这么聪明的办法。 方法是建立两个优先队列&#xff0c;一个大根堆一个小根堆&#xff0c;大根堆记录较小的数&#xff0c;小根堆记录较大的数。 …

Java——pdf增加水印

文章目录 前言方式一 itextpdf项目依赖引入编写PDF添加水印工具类测试效果展示 方式二 pdfbox依赖引入编写实现类效果展示 扩展1、将inputstream流信息添加水印并导出zip2、部署出现找不到指定字体文件 资料参考 前言 近期为了知识库文件导出&#xff0c;文件数据安全处理&…

leetcode_19. 删除链表的倒数第 N 个结点_java

19. 删除链表的倒数第 N 个结点https://leetcode.cn/problems/remove-nth-node-from-end-of-list/ 1、题目 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#…

41、web前端开发之Vue3保姆教程(五 实战案例)

一、项目简介和需求概述 1、项目目标 1.能够基于Vue3创建项目 2.能够基本Vue3相关的技术栈进行项目开发 3.能够使用Vue的第三方组件进行项目开发 4.能够理解前后端分离的开发模式 2、项目概述 使用Vue3结合ElementPlus,ECharts工具实现后台管理系统页面,包含登录功能,…

zsh: command not found: hdc - 鸿蒙 HarmonyOS Next

终端中执行 hdc 命令抛出如下错误; zsh: command not found: hdc 解决办法 首先,查找到 DevEco-Studio 的 toolchains 目录路径; 其次,按照类似如下的文件夹层级结果推理到 toolchains 子级路径下,其中 sdk 后一级的路径可能会存在差异,以实际本地路径结构为主,直至找到 ope…

蓝桥杯--寻找整数

题解 public static void main(String[] args) {int[] mod {0, 0, 1, 2, 1, 4, 5, 4, 1, 2, 9, 0, 5, 10, 11, 14, 9, 0, 11, 18, 9, 11, 11, 15, 17, 9, 23, 20, 25, 16, 29, 27, 25, 11, 17, 4, 29, 22, 37, 23, 9, 1, 11, 11, 33, 29, 15, 5, 41, 46};long t lcm(2, 3);lo…

自然语言处理入门6——RNN生成文本

一、文本生成 我们在前面的文章中介绍了LSTM&#xff0c;根据输入时序数据可以输出下一个可能性最高的数据&#xff0c;如果应用在文字上&#xff0c;就是根据输入的文字&#xff0c;可以预测下一个可能性最高的文字。利用这个特点&#xff0c;我们可以用LSTM来生成文本。输入…

FPGA_DDR错误总结

1otp 31-67 解决 端口没连接 必须赋值&#xff1b; 2.PLACE 30-58 TERM PLINITCALIBZ这里有问题 在顶层输出但是没有管脚约束报错 3.ERROR: [Place 30-675] 这是时钟不匹配IBUF不在同一个时钟域&#xff0c;时钟不在同一个时钟域里&#xff0c;推荐的不建议修改 问题 原本…

NOIP2011提高组.玛雅游戏

目录 题目算法标签: 模拟, 搜索, d f s dfs dfs, 剪枝优化思路*详细注释版代码精简注释版代码 题目 185. 玛雅游戏 算法标签: 模拟, 搜索, d f s dfs dfs, 剪枝优化 思路 可行性剪枝 如果某个颜色的格子数量少于 3 3 3一定无解因为要求字典序最小, 因此当一个格子左边有…

基于ssm框架的校园代购服务订单管理系统【附源码】

1、系统框架 1.1、项目所用到技术&#xff1a; javaee项目 Spring&#xff0c;springMVC&#xff0c;mybatis&#xff0c;mvc&#xff0c;vue&#xff0c;maven项目。 1.2、项目用到的环境&#xff1a; 数据库 &#xff1a;mysql5.X、mysql8.X都可以jdk1.8tomcat8 及以上开发…

【10】数据结构的矩阵与广义表篇章

目录标题 二维以上矩阵矩阵存储方式行序优先存储列序优先存储 特殊矩阵对称矩阵稀疏矩阵三元组方式存储稀疏矩阵的实现三元组初始化稀疏矩阵的初始化稀疏矩阵的创建展示当前稀疏矩阵稀疏矩阵的转置 三元组稀疏矩阵的调试与总代码十字链表方式存储稀疏矩阵的实现十字链表数据标签…

猜猜乐游戏(python)

import randomprint(**30) print(欢迎进入娱乐城) print(**30)username input(输入用户名&#xff1a;) cs 0answer input( 是否加入"猜猜乐"游戏(yes/no)? )if answer yes:while True:num int(input(%s! 当前你的金币数为%d! 请充值(100&#xffe5;30币&…

spring boot 2.7 集成 Swagger 3.0 API文档工具

背景 Swagger 3.0 是 OpenAPI 规范体系下的重要版本&#xff0c;其前身是 Swagger 2.0。在 Swagger 2.0 之后&#xff0c;该规范正式更名为 OpenAPI 规范&#xff0c;并基于新的版本体系进行迭代&#xff0c;因此 Swagger 3.0 实际对应 OpenAPI 3.0 版本。这一版本着重强化了对…