题目
4091. 括号序列
算法标签: 区间 d p dp dp
思路
区间
d
p
dp
dp添加维表示形态
f
[
i
]
[
j
]
[
k
]
f[i][j][k]
f[i][j][k], 对于每种形态考虑状态如何进行转移, 枚举的时候不能重复, 星号也要定义唯一的解析方式, 算法时间复杂度
O
(
n
3
)
O(n ^ 3)
O(n3)
代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 510, MOD = 1e9 + 7;
int n, m;
string s;
int f[N][N][5];
bool check(char a, char b) {
return a == b || a == '?';
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
cin >> n >> m >> s;
for (int len = 1; len <= n; ++len) {
for (int i = 0; i + len - 1 < n; ++i) {
int j = i + len - 1;
if (len == 1) {
if (check(s[i], '*')) f[i][j][2] = 1;
}
else {
if (check(s[i], '(') && check(s[j], ')')) {
if (len == 2) f[i][j][0] = 1;
for (int k = 0; k < 5; ++k) f[i][j][0] = (f[i][j][0] + f[i + 1][j - 1][k]) % MOD;
}
if (len <= m && check(s[i], '*')) f[i][j][2] = f[i + 1][j][2];
// 枚举分界点
for (int k = i; k < j; ++k) {
auto t = f[i][j], l = f[i][k], r = f[k + 1][j];
t[1] = (t[1] + (l[0] + (LL) l[1] + l[3]) * r[0]) % MOD;
t[3] = (t[3] + (l[0] + (LL) l[1]) * r[2]) % MOD;
t[4] = (t[4] + l[2] * (r[0] + (LL) r[1])) % MOD;
}
}
}
}
int ans = ((LL) f[0][n - 1][0] + f[0][n - 1][1]) % MOD;
cout << ans << "\n";
return 0;
}