【每日一个知识点】分布式数据湖与实时计算

news2025/5/17 9:54:21

在现代数据架构中,分布式数据湖(Distributed Data Lake) 结合 实时计算(Real-time Computing) 已成为大数据处理的核心模式。数据湖用于存储海量的结构化和非结构化数据,而实时计算则确保数据能够被迅速处理和分析,以支持业务决策、流式数据分析和机器学习应用。


1. 分布式数据湖概述

1.1 数据湖的定义

数据湖(Data Lake)是一种能够存储 原始格式数据(结构化、半结构化和非结构化数据)的存储架构,支持 大规模数据管理灵活的数据分析

与传统数据仓库(Data Warehouse)相比,数据湖的特点是:

  • 存储更灵活:数据不需要预定义模式(Schema-on-Read)。

  • 支持多种数据格式:如 JSON、Parquet、ORC、CSV、Avro 等。

  • 大规模存储和计算分离:适用于现代云计算和分布式存储架构。

1.2 分布式数据湖架构

分布式数据湖一般由以下关键组件构成:

  1. 存储层(Storage Layer)

    • 采用 分布式文件系统,如:

      • HDFS(Hadoop Distributed File System)

      • Amazon S3(AWS对象存储)

      • Google Cloud Storage(GCS)

      • Azure Data Lake Storage(ADLS)

    • 存储数据采用 列式格式(Parquet/ORC) 以优化查询性能。

  2. 元数据管理(Metadata Management)

    • 维护数据表结构、Schema 及索引,如:

      • Apache Hive Metastore

      • AWS Glue Catalog

      • Databricks Delta Lake

    • 通过 ACID 事务(如 Delta Lake)增强数据一致性。

  3. 计算层(Compute Layer)

    • 计算框架:Apache Spark、Apache Flink、Presto、Trino

    • 执行 批处理(Batch Processing)流计算(Stream Processing)

  4. 数据访问接口(Data Access Layer)

    • 通过 SQL、API、BI 工具 访问数据,如:

      • Presto、Trino(查询)

      • Apache Spark SQL

      • Apache Arrow(高性能数据传输)

  5. 数据治理(Data Governance)

    • 提供 权限管理、数据质量控制,常见工具:

      • Apache Ranger(权限管理)

      • Apache Atlas(数据血缘分析)


2. 实时计算技术

2.1 实时计算的需求

随着 物联网、金融交易、智能推荐、网络安全监控 等场景的兴起,实时计算需求不断增长:

  • 低延迟(Low Latency):秒级甚至毫秒级响应数据变化。

  • 高吞吐(High Throughput):每秒处理数百万条数据流。

  • 流式计算(Stream Processing):对数据流进行增量计算。

2.2 实时计算架构

现代实时计算架构通常采用 Lambda 或 Kappa 架构

  1. Lambda 架构

    • 批处理(Batch)+ 流处理(Streaming) 结合:

      • 批处理:Hadoop、Spark

      • 流处理:Flink、Kafka Streams

    • 优点:可提供数据准确性保障(数据回溯)。

    • 缺点:代码维护复杂,数据同步成本高。

  2. Kappa 架构

    • 仅使用 流计算(Streaming Processing) 处理所有数据。

    • 主要组件:

      • Kafka/Pulsar(数据流传输)

      • Flink/Kafka Streams/Spark Streaming(流处理)

    • 优点:架构简单,适用于 事件驱动应用(如欺诈检测、实时推荐)。

2.3 主要实时计算框架

框架计算模式适用场景
Apache Flink实时流处理(Stream Processing)高吞吐、低延迟应用
Apache Kafka Streams轻量级流处理事件驱动架构
Apache Spark Streaming微批(Micro-batch)流计算实时分析 + 兼容 Spark 批处理
Apache Storm低延迟流处理高速数据流(金融风控)
Apache Druid实时 OLAP 分析BI、数据可视化

3. 分布式数据湖与实时计算的结合

3.1 为什么要结合数据湖与实时计算?

在实际业务中,数据湖的存储能力与实时计算结合,可以实现:

  • 实时分析:基于数据湖的流数据分析,如用户行为分析。

  • 实时 ETL(Extract-Transform-Load):流式数据清洗、转换、存入数据湖。

  • 增量数据处理:结合 Delta Lake、Iceberg 进行 Change Data Capture(CDC),只处理新增数据。

3.2 结合方式

  1. 数据湖 + 实时流计算

    • 数据流入(Streaming Ingestion)

      • Kafka → Flink → Delta Lake / Iceberg

    • 实时查询(Streaming Query)

      • Flink SQL 直接查询数据湖。

  2. 数据湖 + 近实时 OLAP

    • 数据湖存储历史数据,Druid 进行实时聚合分析:

      • Flink → Kafka → Druid

  3. 数据湖 + AI 实时特征计算

    • 实时机器学习(Online Machine Learning)

      • Flink 计算特征 → 存入 Feature Store(如 Feast)

      • AI 模型使用最新数据训练 / 推理


4. 典型应用场景

应用场景解决方案主要技术
实时风控监测交易数据,检测欺诈行为Flink + Kafka + 数据湖
用户行为分析统计 PV/UV,用户路径分析Flink SQL + Delta Lake
智能推荐结合用户实时行为调整推荐策略Flink + ML 模型
IoT 数据处理处理海量物联网设备数据Kafka + Flink + Iceberg
日志分析监控系统日志,检测异常Flink + Druid + Elasticsearch

5. 未来发展趋势

  1. 数据湖 + Lakehouse 模式:采用 Delta Lake、Apache Iceberg 统一批流处理能力,支持 ACID 事务。

  2. 流批一体化(Stream-Batch Unification):Flink/Spark 逐步统一批处理和流处理,提高一致性。

  3. 自动化数据治理(Automated Data Governance):引入 AI 进行元数据管理和数据质量检测。

  4. 云原生架构(Cloud-Native Data Lake):无服务器(Serverless)计算框架,如 AWS Athena、Google BigQuery。


6. 结论

分布式数据湖与实时计算的结合,能够高效存储、管理和分析大规模数据,是未来数据架构发展的核心方向。通过采用 Flink、Kafka、Delta Lake 等技术,可以实现 高效实时分析、流式数据处理和 AI 应用,满足企业级大数据需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2328277.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

c语言数据结构--------拓扑排序和逆拓扑排序(Kahn算法和DFS算法实现)

#include <stdio.h> #include <string.h> #include <stdbool.h> #include <stdlib.h>//使用卡恩算法(Kahn)和深度优先算法(DFS)实现//拓扑排序和逆拓扑排序//拓扑排序和逆拓扑排序顶点顺序相反//图&#xff0c;邻接矩阵存储 #define MaxVertexNum 100 …

谷粒微服务高级篇学习笔记整理---nginx搭建正反向代理

正向与反向代理 **正向代理:**客户端向代理服务器发请求并指定目标服务器,代理向目标转交请求并将获得的内容转给客户端。 反向代理:用户直接访问反向代理服务器就可以获得目标服务器的资源。反向代理服务器统一了访问入口。 给首页配置反向代理 修改windows的hosts文件配…

2.pycharm保姆级安装教程

一、pycharm安装 1.官网上下载好好软&#xff0c;双击打开 2.下一步 3.修改路径地址 (默认也可以) 4.打勾 5.安装 不用重启电脑 二、添加解释器 1.双击软件&#xff0c;打开 2.projects – new project 3.指定项目名字&#xff0c;项目保存地址&#xff0c;解释器 4.右击 – …

【SQL】取消sql某一列的唯一值key值的方法

在插入数据到sql时&#xff0c;遇到了这个问题&#xff1a; Duplicate entry ‘XXX’ for key 起因是&#xff1a; 我之前设计表的时候&#xff0c;手动给product_title 这个列加了一个key&#xff0c; key 是这个字段的唯一键约束&#xff0c;就不能重复在这一列存入重复的数…

数据库--SQL

SQL&#xff1a;Structured Query Language&#xff0c;结构化查询语言 SQL是用于管理关系型数据库并对其中的数据进行一系列操作&#xff08;包括数据插入、查询、修改删除&#xff09;的一种语言 分类&#xff1a;数据定义语言DDL、数据操纵语言DML、数据控制语言DCL、事务处…

SQL语句(一)—— DDL

目录 一、SQL 基础知识 &#xff08;一&#xff09;SQL 通用语法 &#xff08;二&#xff09;SQL 分类 二、DDL —— 数据库操作 1、查询所有数据库 2、查询当前数据库 3、创建数据库 4、删除数据库 5、切换数据库 三、DDL —— 表操作 &#xff08;一&#xff09;查…

Husky目标跟踪

1.0设备清单 幻影峡谷、适配器 摄像头及数据线、显卡欺骗器 外接屏幕、键盘鼠标 Husky底盘、便携显示屏、键盘鼠标 移动电源 1.1连线 插排——移动电源幻影峡谷——适配器——插排摄像头——幻影峡谷&#xff08;摄像头固定在机械臂前方的底盘上&#xff09;键盘鼠标显示器…

Python----机器学习(线性回归:自求导的方法实现)

一、线性回归方程 目标&#xff1a; 线性回归的目标是找到最佳的系数来使模型与观察到的数据尽可能拟合。 应用&#xff1a; 预测&#xff1a;给定自变量的值&#xff0c;预测因变量的值。 回归分析&#xff1a;确定自变量对因变量的影响程度 线性回归是统计学和机器学习中最简…

Springcache+xxljob实现定时刷新缓存

目录 SpringCache详解 SpringCache概述 核心原理 接口抽象与多态 AOP动态代理 核心注解以及使用 公共属性 cacheNames KeyGenerator&#xff1a;key生成器 key condition&#xff1a;缓存的条件&#xff0c;对入参进行判断 注解 xxl-job详解 SpringcacheRedis实现…

vue2拖拉拽做个模拟公式工具

1. 成图 2. 介绍 就是简单拖拉拽来做个规则运算器&#xff0c;具体运算规则、校验规则自己加。 3. 代码 HTML代码 <template><div class"red-cont"><div class"red-top"><divclass"red-top-left"><div class&quo…

Windows查重工具,强烈推荐大家收藏!

我大家在用电脑的时候&#xff0c;是不是发现用得越久&#xff0c;电脑里的软件和文件就越多&#xff1f; 今天我给大家带来的这两款重复文件查找神器&#xff0c;简直就是电脑里的“清洁小能手”&#xff0c;能帮你把那些重复的文件和文件夹找出来。 Easy DupLicate Finder 重…

使用python完成手写数字识别

入门图像识别的第一个案例,看到好多小伙伴分享,也把自己当初的思路捋捋,写成一篇博客,作为记录和分享,也欢迎各位交流讨论。 实现思路 数据集:MNIST(包含60,000个训练样本和10,000个测试样本) 深度学习框架:Keras(基于TensorFlow) 模型架构:卷积神经网络(CNN) 实…

OpenLayers:如何控制Overlay的层级?

我最近在使用Overlay的时候遇到了一个问题&#xff0c;我向地图中添加了两种不同的Overlay&#xff08;下图中的蓝色标牌和粉色标牌&#xff09;&#xff0c;我希望粉色标牌可以显示在最上层&#xff0c;可偏偏蓝色标牌却将其遮挡住了。于是我对Overlay的层级开始起了兴趣&…

《Golang高性能网络编程:构建低延迟服务器应用》

在本文中&#xff0c;我们将深入探讨Golang高性能网络编程&#xff0c;帮助您构建低延迟服务器应用。我们将介绍Golang的网络编程特性、优化技巧和实际案例&#xff0c;让您更好地理解和应用Golang在网络编程领域的优势。 高性能网络编程简介 什么是Golang高性能网络编程 高性能…

数据结构C语言练习(设计循环队列)

一、循环队列简介 循环队列是一种线性数据结构&#xff0c;基于 FIFO&#xff08;先进先出&#xff09;原则&#xff0c;将队尾连接到队首形成循环。其核心优势是能复用队列之前用过的空间&#xff0c;避免普通队列 “假溢出” 问题。实现时&#xff0c;通常申请 k1 大小的数组…

vscode代码片段的设置与使用

在 Visual Studio Code (VS Code) 中&#xff0c;可以通过自定义**代码片段&#xff08;Snippets&#xff09;**快速插入常用代码模板。以下是详细设置步骤&#xff1a; 步骤 1&#xff1a;打开代码片段设置 按下快捷键 Ctrl Shift P&#xff08;Windows/Linux&#xff09;或…

uniapp -- 列表垂直方向拖拽drag组件

背景 需要在小程序中实现拖拽排序功能,所以就用到了m-drag拖拽组件,在开发的过程中,发现该组件在特殊的场景下会有些问题,并对其进行了拓展。 效果 组件代码 <template><!-- 创建一个垂直滚动视图,类名为m-drag --><scroll

一款非常小的软件,操作起来非常丝滑!

今天我想给大家分享一款超级实用的小软件&#xff0c;它是一款电脑上用的倒计时和关机助手。 关机助手 帮你自动关机 这款关机助手特别小巧&#xff0c;完全不需要安装&#xff0c;文件大小才60KB&#xff0c;比一个小小的文件还小。你只需要把它下载下来&#xff0c;双击打开…

FrameWork基础案例解析(四)

文章目录 单独拉取framework开机与开机动画横屏Android.mk语法单独编译SDKmake 忽略warning单独修改和编译Camera2单独编译Launcher3Android Studio 导入、修改、编译Settings导入 Android Studio 导入、修改、编译Launcher3android 开机默认进入指定Launcher植入自己的apk到系…

通过 C# 提取PDF文档中的图片

当 PDF 文件中包含有价值的图片&#xff0c;如艺术画作、设计素材、报告图表等&#xff0c;提取图片可以将这些图像资源进行单独保存&#xff0c;方便后续在不同的项目中使用&#xff0c;避免每次都要从 PDF 中查找。本文将介绍如何使用C#通过代码从PDF文档中提取图片&#xff…