YOLO11改进加入ResNet网络

news2025/5/19 23:38:31

文章目录

    • 1.改进目的
    • 2.demo引入
      • 2.1代码
      • 2.2 结果展示
      • 2.3 BottleNeck详解

1.改进目的

原始YOLO11模型训练好以后,检测结果mAP结果很低,视频检测结果很差,于是想到改进网络,这里介绍改进主干网络。

2.demo引入

2.1代码

# @File: 21.YOLO11修改主干网络.py
# @Author: chen_song
# @Time: 2025-02-28 21:29
import torch
import torch.nn as nn
import torchvision.models as models


class YOLO11Backbone(nn.Module):
 def __init__(self, num_classes=80):
  super(YOLO11Backbone, self).__init__()
  # 使用预训练的ResNet50作为主干网络
  self.backbone = models.resnet50(pretrained=True)

  # 修改最后一层全连接层以适应YOLO的输出
  self.backbone.fc = nn.Linear(self.backbone.fc.in_features, num_classes)

 def forward(self, x):
  x = self.backbone(x)
  return x


# 一个简单的测试用例
if __name__ == "__main__":
 model = YOLO11Backbone(num_classes=80)
 print(model)

 # 创建一个随机输入张量
 input_tensor = torch.randn(1, 3, 224, 224)
 output = model(input_tensor)
 print(output.shape)

2.2 结果展示

D:\anaconda3\envs\yolov5_cuda12.4\python.exe E:\PROJ\yolo11\ultralytics\ultralytics\demo\21.YOLO11修改主干网络.py
D:\anaconda3\envs\yolov5_cuda12.4\lib\site-packages\torchvision\models_utils.py:208: UserWarning: The parameter ‘pretrained’ is deprecated since 0.13 and may be removed in the future, please use ‘weights’ instead.
warnings.warn(
D:\anaconda3\envs\yolov5_cuda12.4\lib\site-packages\torchvision\models_utils.py:223: UserWarning: Arguments other than a weight enum or None for ‘weights’ are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=ResNet50_Weights.IMAGENET1K_V1. You can also use weights=ResNet50_Weights.DEFAULT to get the most up-to-date weights.
warnings.warn(msg)
Downloading: “https://download.pytorch.org/models/resnet50-0676ba61.pth” to C:\Users\PC/.cache\torch\hub\checkpoints\resnet50-0676ba61.pth
100%|██████████| 97.8M/97.8M [02:45<00:00, 619kB/s]
YOLO11Backbone(
(backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=80, bias=True)
)
)
torch.Size([1, 80])

Process finished with exit code 0

2.3 BottleNeck详解

在这里插入图片描述由于ResNet可以构建更深的网络,所以最后对特征的提取必定比原始YOLO11强。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2307856.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

硬编码(三)经典变长指令一

我们在前两节的硬编码中学习了定长指令&#xff0c;接下来学习变长指令 对于定长指令&#xff0c;我们通过opcode便可知该指令的长度&#xff0c;但是对于变长指令却是不可知的。变长指令长度由opcode&#xff0c;ModR/M&#xff0c;SIB共同决定。变长指令通常在需要操作内存的…

在线VS离线TTS(语音合成芯片)有哪些优势-AIOT智能语音产品方案

离线 TTS 存在语音质量欠佳、音色选择有限、语言支持单一更新困难、占用资源多、适应性差、难以个性化定制等痛点 01更新维护困难 由于是离线模式&#xff0c;难以及时获取最新的语音数据和算法更新&#xff0c;无法得到持续改进。 02占用本地资源 需要在设备本地存储较大的…

【Spring Boot】掌握 Spring 事务:隔离级别与传播机制解读与应用

前言 ???本期讲解关于spring 事务传播机制介绍~~~ ??感兴趣的小伙伴看一看小编主页&#xff1a;-CSDN博客 ?? 你的点赞就是小编不断更新的最大动力 ??那么废话不多说直接开整吧~~ 目录 ???1.事务的隔离级别 ??1.1MySQL事务隔离级别 ??1.2Spring事务隔离…

PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单

在 PySide中&#xff0c;contextMenuEvent() 是 QWidget 类&#xff08;以及继承自它的所有子类&#xff09;的一个事件处理方法&#xff0c;主要用于处理上下文菜单事件&#xff0c;也就是当用户在控件上右键点击时触发的事件。 • 通过重新定义contextMenuEvent()来实现自定…

Redis 持久化方式:RDB(Redis Database)和 AOF(Append Only File)

本部分内容是关于博主在学习 Redis 时关于持久化部分的记录&#xff0c;介绍了 RDB 和 AOF 两种持久化方式&#xff0c;详细介绍了持久化的原理、配置、使用方式、优缺点和使用场景。并对两种持久化方式做了对比。文章最后介绍了 Redis 持久化的意义并与其他常见的缓存技术做了…

数据库测试

TPCH 22条SQL语句分析 - xibuhaohao - 博客园 TPCH模型规范、测试说明及22条语句 - zhjh256 - 博客园 TPC-DS 性能比较&#xff1a;TiDB 与 Impala-PingCAP | 平凯星辰 揭秘Oracle TPC-H性能优化&#xff1a;如何提升数据库查询速度&#xff0c;揭秘实战技巧与挑战 引言 T…

< 自用文儿 > Gobuster 暴力扫描工具与 SecLists 安全测试词表集合

Ethice 道德问题 GFW 的保护下&#xff0c;很多的设备操作系统是停留在更老的版本&#xff0c;应用软件也是&#xff0c;因此很多的漏洞没有被修复。通讯没有使用加密&#xff0c;例如网页没有使用 HTTPS 网站很多。几乎是半裸的在网络上等着被食。 不做恶是下限。 环境&…

关于网页地图的坐标系

EPSG:4326地理坐标系 和 EPSG:3857Web 墨卡托投影 EPSG:4326 定义&#xff1a;EPSG:4326 是基于 WGS84 椭球的地理坐标系&#xff0c;使用经度&#xff08;Longitude&#xff09;和纬度&#xff08;Latitude&#xff09;表示地球上的位置。特点&#xff1a; 经度范围为 -180 …

华为云之使用鲲鹏弹性云服务器部署Node.js环境【玩转华为云】

华为云之使用鲲鹏弹性云服务器部署Node.js环境【玩转华为云】 一、本次实践介绍1.1 实践环境简介1.3 本次实践完成目标 二、 相关服务介绍2.1 华为云ECS云服务器介绍2.2 Node.js介绍 三、环境准备工作3.1 预置实验环境3.2 查看预置环境信息 四、登录华为云4.1 登录华为云4.2 查…

C语言整体梳理-基础篇-结构体

结构体详解 1.1结构体是什么&#xff1f; 结构体是一些值的集合&#xff0c;这些值成为成员变量&#xff0c;结构体的每个成员可以是不同类型的变量。 数组是相同类型的元素组成的集合&#xff0c;结构体可以是不同类型元素组成的集合。 1.2结构体的声明 1.2.1常规声明 s…

【 实战案例篇三】【某金融信息系统项目管理案例分析】

大家好,今天咱们来聊聊金融行业的信息系统项目管理。这个话题听起来可能有点专业,但别担心,我会尽量用大白话给大家讲清楚。金融行业的信息系统项目管理,说白了就是如何高效地管理那些复杂的IT项目,确保它们按时、按预算、按质量完成。咱们今天不仅会聊到一些理论,还会通…

会话与会话管理:Cookie与Session的深度解析

一、什么是会话&#xff1f; 二、Cookie&#xff1a;客户端存储技术 1. Cookie的工作原理 2、在后端设置cookie 3、在前端设置cookie 三、浏览器开启了cookie禁用怎么办&#xff1f; 一、什么是会话&#xff1f; 会话&#xff08;Session&#xff09;是指一个用户与服务器之间…

MAVlink链路环境搭建并解决“ModuleNotFoundError: No module named ‘xxx’”问题

MAVlink链路常用于云台相机与飞控以及地面站之间的数据传输&#xff0c;搭建MAVlink链路环境需要安装Python、Future、MAVLink、pymavlink四样工具用于生成mavlink代码。 Python 直接从官网下载默认安装即可https://www.python.org/downloads/ 在电脑命令行进行安装验证&#x…

java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类

&#xff08;以下内容全部来自上述课程&#xff09; 1.抽象类 父类定义抽象方法后&#xff0c;子类的方法就必须重写&#xff0c;抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为&#xff08;方法&#xff09;抽取到父类之后。由于每一个子类执行的内容是不一样…

Go - 泛型的使用

泛型的语法 泛型为Go语言添加了三个新的重要特性: 函数和类型的类型参数。将接口类型定义为类型集&#xff0c;包括没有方法的类型。类型推断&#xff0c;它允许在调用函数时在许多情况下省略类型参数。 类型参数 类型参数的使用 除了函数中支持类型参数列表外&#xff0c…

蓝桥杯刷题-dp-线性dp(守望者的逃离,摆花,线段)

[NOIP 2007 普及组] 守望者的逃离 题目描述 恶魔猎手尤迪安野心勃勃&#xff0c;他背叛了暗夜精灵&#xff0c;率领深藏在海底的娜迦族企图叛变。 守望者在与尤迪安的交锋中遭遇了围杀&#xff0c;被困在一个荒芜的大岛上。 为了杀死守望者&#xff0c;尤迪安开始对这个荒岛…

内容中台的企业CMS架构是什么?

企业CMS模块化架构 现代企业内容管理系统的核心在于模块化架构设计&#xff0c;通过解耦内容生产、存储、发布等环节构建灵活的技术栈。动态/静态发布引擎整合技术使系统既能处理实时更新的产品文档&#xff0c;也能生成高并发的营销落地页&#xff0c;配合版本控制机制确保内…

算法题(81):询问学号

审题&#xff1a; 需要我们根据给出的n值确定录入数据个数&#xff0c;然后根据给出的数据存储学号。再根据m值确定需要输出的学号个数&#xff0c;然后根据数组内容输出学号 思路: 我们可以利用数组进行数据顺序存储&#xff0c;以及随机读取完成本题 由于学号最大为1e9&#…

React antd的datePicker自定义,封装成组件

一、antd的datePicker自定义 需求&#xff1a;用户需要为日期选择器的每个日期单元格添加一个Tooltip&#xff0c;当鼠标悬停时显示日期、可兑换流量余额和本公会可兑流量。这些数据需要从接口获取。我需要结合之前的代码&#xff0c;确保Tooltip正确显示&#xff0c;并且数据…

C++ AVL树详解(含模拟实现)

目录 AVL树的概念 AVL树节点的定义 AVL树的插入 AVL树的旋转&#xff08;难点&#xff09; AVL树的验证 AVL树的删除(本文不做具体的模拟实现) AVL树的性能 AVL树的模拟实现 AVL树的概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索…