基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

news2025/5/11 20:43:11

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a/matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

......................................................................... 
X       = woa_idx;
%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')

rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差

title(sprintf('WOA-biLSTM分析-RMSE=%.3f', rmse));

save R3.mat Ypred Ytest rmse Rmsev
207

4.算法理论概述

        LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

       BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

       这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

       在本课题中,将woa应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

       1.随机初始化一群鲸鱼的位置,每个鲸鱼的位置对应一组 BiLSTM 的参数(如权重和偏置)。

       2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常用的适应度函数是均方误差(MSE):

       使用优化后的 BiLSTM 参数在训练集上进行最终训练。使用训练好的模型对测试集进行预测,并将预测结果进行反归一化处理,得到最终的预测值。WOA 具有较强的全局搜索能力,能够在参数空间中寻找最优的 BiLSTM 参数,避免陷入局部最优解。

       在大多数序列预测任务中,BiLSTM的预测精度优于LSTM。因为它能更全面地捕捉序列中的长期依赖关系,减少信息丢失,从而提高预测准确性。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2304481.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DeepSeek私有化专家 | 云轴科技ZStack入选IDC中国生成式AI市场概览

DeepSeek 火爆全球AI生态圈,并引发企业用户大量私有化部署需求。 国际数据公司IDC近日发文《DeepSeek爆火的背后,大模型/生成式AI市场生态潜在影响引人关注》,认为中国市场DeepSeekAI模型的推出在大模型/生成式AI市场上引起了轰动&#xff0c…

npm在install时提示要安装python问题处理

使用npm\yarn\pnpm下载以来的时候,一直提示python异常,有的项目安装了python之后,下载依赖还是异常 而且旧版本项目使用python2,新的使用Python3…很烦 解决方案1:cnpm 安装教程: npm安装cnpm,解决node12\…

如何将MySQL数据库迁移至阿里云

将 MySQL 数据库迁移至阿里云可以通过几种不同的方法,具体选择哪种方式取决于你的数据库大小、数据复杂性以及对迁移速度的需求。阿里云提供了多种迁移工具和服务,本文将为你介绍几种常见的方法。 方法一:使用 阿里云数据库迁移服务 (DTS) 阿…

CSS基础(盒子模型的组成、内容溢出、隐藏元素的方式、样式的继承、元素的默认样式、布局技巧、元素之间的空白问题、行内块元素的幽灵空白问题)

文章目录 1. 盒子模型的组成1.1 内容区1.2 默认宽度1.3 内边距1.3.1 内边距属性1.3.2 复合属性1.3.3 单位1.3.4 注意事项 1.4 边框1.4.1 边框属性1.4.2 复合属性1.4.3 单方向边框1.4.4 边框样式1.4.5 注意事项 1.5 外边距1.5.1 外边距属性1.5.2 复合属性1.5.3 注意事项 1.6 外边…

【第二节】C++设计模式(创建型模式)-抽象工厂模式

目录 引言 一、抽象工厂模式概述 二、抽象工厂模式的应用 三、抽象工厂模式的适用场景 四、抽象工厂模式的优缺点 五、总结 引言 抽象工厂设计模式是一种创建型设计模式,旨在解决一系列相互依赖对象的创建问题。它与工厂方法模式密切相关,但在应用…

【开关电源】汽车前端电源保护电路设计

前言: 汽车电池端子在启动或者保养过程中被反接,如果对这些故障不能及时处理,就可能导致ECU或供电设备被损坏;此外在供电过程中电压也存在不稳定的情况。在EMC测试中ISO16750和ISO7637也会有负电压的情况。 肖特基二极管和 P 沟道…

网络运维学习笔记 017 HCIA-Datacom综合实验01

文章目录 综合实验1实验需求总部特性 分支8分支9 配置一、 基本配置(IP二层VLAN链路聚合)ACC_SWSW-S1SW-S2SW-Ser1SW-CoreSW8SW9DHCPISPGW 二、 单臂路由GW 三、 vlanifSW8SW9 四、 OSPFSW8SW9GW 五、 DHCPDHCPGW 六、 NAT缺省路由GW 七、 HTTPGW 综合实…

C++单例模板类,继承及使用

前言: 单例模式可以参考如下文章: 我的设计模式,单例模式的设计和实现 c 单例模式的模板类 - 川野散人 - 博客园 1.为什么需要单例模板类? 场景问题: 如果需要100个单例类就需要设计100个单例模式,代…

nodejs:vue 3 + vite 作为前端,将 html 填入<iframe>,在线查询英汉词典

向 doubao.com/chat/ 提问: node.js js-mdict 作为后端,vue 3 vite 作为前端,编写在线查询英汉词典 后端部分(express js-mdict ) 详见上一篇:nodejs:express js-mdict 作为后端&#xff…

现场可以通过手机或者pad实时拍照上传到大屏幕的照片墙现场大屏电子照片墙功能

现场可以通过手机或者pad实时拍照上传到大屏幕的照片墙现场大屏电子照片墙功能,每个人都可以通过手机实时拍照上传到大屏幕上,同时还可以发布留言内容,屏幕上会同步滚动播放展示所有人的照片和留言。相比校传统的照片直播功能更加灵活方便,而…

《FFTformer:基于频域的高效Transformer用于高质量图像去模糊》

paper:2211.12250 GitHub:kkkls/FFTformer: [CVPR 2023] Effcient Frequence Domain-based Transformer for High-Quality Image Deblurring CVPR 2023 目录 摘要 1、介绍 2、相关工作 2.1 基于深度CNN的图像去模糊方法 2.2 Transformer及其在图…

ChātGPT赋能的“SolidWorks工具箱”:重塑3D设计效率新标杆

ChātGPT精心打造的“SolidWorks工具箱”正逐步成为3D设计领域中的一颗璀璨新星,其集高效、便捷与创新于一身,为用户带来了前所未有的设计体验。以下是对这一革命性工具箱的深度剖析与美化呈现: 一、核心功能:重塑设计流程&#x…

基于CNN的FashionMNIST数据集识别3——模型验证

源码 import torch import torch.utils.data as Data from torchvision import transforms from torchvision.datasets import FashionMNIST from model import LeNetdef test_data_process():test_data FashionMNIST(root./data,trainFalse,transformtransforms.Compose([tr…

洛谷P1135多题解

解法1&#xff1a;BFS&#xff0c;有n个节点每个节点最多被访问一次&#xff0c;所以BFS时间复杂度为O(n)。注意ab的特判。 #include<iostream> #include<cstring> #include<queue> using namespace std; const int N 205; int n, a, b; int k[N], s[N]; b…

用AI写游戏3——deepseek实现kotlin android studio greedy snake game 贪吃蛇游戏

项目下载 https://download.csdn.net/download/AnalogElectronic/90421306 项目结构 就是通过android studio 建空项目&#xff0c;改下MainActivity.kt的内容就完事了 ctrlshiftalts 看项目结构如下 核心代码 MainActivity.kt package com.example.snakegame1// MainA…

论文解读 | AAAI'25 Cobra:多模态扩展的大型语言模型,以实现高效推理

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 点击 阅读原文 观看作者讲解回放&#xff01; 个人信息 作者&#xff1a;赵晗&#xff0c;浙江大学-西湖大学联合培养博士生 内容简介 近年来&#xff0c;在各个领域应用多模态大语言模型&#xff08;MLLMs&…

DPVS-3: 双臂负载均衡测试

测试拓扑 双臂模式&#xff0c; 使用两个网卡&#xff0c;一个对外&#xff0c;一个对内。 Client host是物理机&#xff0c; RS host都是虚拟机。 LB host是物理机&#xff0c;两个CX5网卡分别在两个子网。 配置文件 用dpvs.conf.sample作为双臂配置文件&#xff0c;其中…

记一次复杂分页查询的优化历程:从临时表到普通表的架构演进

1. 问题背景 在项目开发中&#xff0c;我们需要实现一个复杂的分页查询功能&#xff0c;涉及大量 IP 地址数据的处理和多表关联。在我接手这个项目的时候,代码是这样的 要知道代码里面的 ipsList 数据可能几万条甚至更多,这样拼接的sql,必然是要内存溢出的,一味地扩大jvm参数不…

架构师面试(六):熔断和降级

问题 在千万日活的电商系统中&#xff0c;商品列表页服务通过 RPC 调用广告服务&#xff1b;经过统计发现&#xff0c;在最近10秒的时间里&#xff0c;商品列表页服务在对广告服务的调用中有 98% 的调用是超时的&#xff1b; 针对这个场景&#xff0c;下面哪几项的说法是正确的…

细说 Java 引用(强、软、弱、虚)和 GC 流程(二)

一、前文回顾 在 细说Java 引用&#xff08;强、软、弱、虚&#xff09;和 GC 流程&#xff08;一&#xff09; 我们对Java 引用有了总体的认识&#xff0c;本文将继续深入分析 Java 引用在 GC 时的一些细节。 还是从我们在前文中提到的引用流程图里说起&#xff0c;这里不清…