ABB工业机器人(IRB2600)如下图所示(d1=444.8mm,a1=150mm,a2=700mm,a3=115mm,d4=795mm,d6=85mm),利用改进DH法建模,坐标系如下所示:

利用改进DH法建模,该机器人的DH参数表如下所示:

对该机械臂进行位置分析,即给定一组关节角度,求解末端点P相对于基坐标系的坐标值以及末端坐标系相对于基坐标系的姿态矩阵。
1.1 机器人工具箱仿真(RT)
当 θ 1 = 10 ° \theta_1=10° θ1=10°, θ 2 = 30 ° \theta_2=30° θ2=30°, θ 3 = 50 ° \theta_3=50° θ3=50°, θ 4 = 70 ° \theta_4=70° θ4=70°, θ 5 = 90 ° \theta_5=90° θ5=90°, θ 6 = 110 ° \theta_6=110° θ6=110°时,利用机器人工具箱的MDH法建模仿真如下:

仿真结果如下:

  此时,末端点P的位置坐标仿真值为:
  
     
      
       
        
        
          x 
         
        
          P 
         
        
       
         = 
        
       
         0.697824163926912 
        
       
           
        
       
         m 
        
       
      
        x_P=0.697824163926912\ m 
       
      
    xP=0.697824163926912 m, 
     
      
       
        
        
          y 
         
        
          P 
         
        
       
         = 
        
       
         0.204151283892428 
        
       
           
        
       
         m 
        
       
      
        y_P=0.204151283892428\ m 
       
      
    yP=0.204151283892428 m, 
     
      
       
        
        
          z 
         
        
          P 
         
        
       
         = 
        
       
         0.283016909593919 
        
       
           
        
       
         m 
        
       
      
        z_P=0.283016909593919\ m 
       
      
    zP=0.283016909593919 m
  末端坐标系相对于基坐标系的旋转矩阵为:
  
     
      
       
       
         R 
        
       
         = 
        
        
        
          [ 
         
         
          
           
            
             
             
               − 
              
             
               0.859075284270241 
                 
             
               0.130692715335043 
                 
             
               − 
              
             
               0.494882885251004 
              
             
            
           
          
          
           
            
             
             
               − 
              
             
               0.477829973409708 
                   
             
               0.141827001123388 
                    
             
               0.866927689178068 
              
             
            
           
          
          
           
            
             
             
               0.183488889220255 
                  
             
               0.981226026922798 
               
             
               − 
              
             
               0.059391174613885 
              
             
            
           
          
         
        
          ] 
         
        
       
      
        R = \begin{bmatrix} -0.859075284270241 \,\,\, 0.130692715335043 \,\,\, -0.494882885251004 \\ -0.477829973409708\,\,\,\,\, 0.141827001123388 \,\,\,\,\,\, 0.866927689178068 \\ 0.183488889220255\,\,\,\, 0.981226026922798\, -0.059391174613885 \end{bmatrix} 
       
      
    R= 
             −0.8590752842702410.130692715335043−0.494882885251004−0.4778299734097080.1418270011233880.8669276891780680.1834888892202550.981226026922798−0.059391174613885 
             
1.2 改进DH法建模仿真(MDH)
MDH的齐次变换矩阵如下:

坐标系6的齐次变换矩阵为:

   当 
     
      
       
        
        
          θ 
         
        
          1 
         
        
       
         = 
        
       
         10 
        
       
         ° 
        
       
      
        \theta_1=10° 
       
      
    θ1=10°, 
     
      
       
        
        
          θ 
         
        
          2 
         
        
       
         = 
        
       
         30 
        
       
         ° 
        
       
      
        \theta_2=30° 
       
      
    θ2=30°, 
     
      
       
        
        
          θ 
         
        
          3 
         
        
       
         = 
        
       
         50 
        
       
         ° 
        
       
      
        \theta_3=50° 
       
      
    θ3=50°, 
     
      
       
        
        
          θ 
         
        
          4 
         
        
       
         = 
        
       
         70 
        
       
         ° 
        
       
      
        \theta_4=70° 
       
      
    θ4=70°, 
     
      
       
        
        
          θ 
         
        
          5 
         
        
       
         = 
        
       
         90 
        
       
         ° 
        
       
      
        \theta_5=90° 
       
      
    θ5=90°, 
     
      
       
        
        
          θ 
         
        
          6 
         
        
       
         = 
        
       
         110 
        
       
         ° 
        
       
      
        \theta_6=110° 
       
      
    θ6=110°时,计算结果如下:

此时,末端点P的位置坐标如下所示: x P = 0.697824163926912 m x_P=0.697824163926912\ m xP=0.697824163926912 m, y P = 0.204151283892428 m y_P=0.204151283892428\ m yP=0.204151283892428 m, z P = 0.283016909593919 m z_P=0.283016909593919\ m zP=0.283016909593919 m
末端坐标系相对于基坐标系的旋转矩阵为:
R = [ − 0.859075284270241 0.130692715335043 − 0.494882885251004 − 0.477829973409708 0.141827001123388 0.866927689178068 0.183488889220255 0.981226026922798 − 0.059391174613885 ] R = \begin{bmatrix} -0.859075284270241 \,\,\, 0.130692715335043 \,\,\, -0.494882885251004 \\ -0.477829973409708\,\,\,\,\, 0.141827001123388 \,\,\,\,\,\, 0.866927689178068 \\ 0.183488889220255\,\,\,\, 0.981226026922798\, -0.059391174613885 \end{bmatrix} R= −0.8590752842702410.130692715335043−0.494882885251004−0.4778299734097080.1418270011233880.8669276891780680.1834888892202550.981226026922798−0.059391174613885 
1.3 Simscape模型仿真(Sim)
首先将solidworks模型的零件导出step格式,注意要选择参考坐标系。然后,在simscape模块中选择multibody模型进行建模,具体如下所示:

当设置好角度时,进行仿真,结果如下所示:

当 θ 1 = 10 ° \theta_1=10° θ1=10°, θ 2 = 30 ° \theta_2=30° θ2=30°, θ 3 = 50 ° \theta_3=50° θ3=50°, θ 4 = 70 ° \theta_4=70° θ4=70°, θ 5 = 90 ° \theta_5=90° θ5=90°, θ 6 = 110 ° \theta_6=110° θ6=110°时,计算结果如下:
末端点P的位置坐标可以获得,具体值如下所示: x P = 0.69782416392691 m x_P=0.69782416392691\ m xP=0.69782416392691 m, y P = 0.20415128389243 m y_P=0.20415128389243\ m yP=0.20415128389243 m, z P = 0.28301690959392 m z_P=0.28301690959392\ m zP=0.28301690959392 m
末端坐标系相对于基坐标系的旋转矩阵为:
R = [ − 0.85907528427024 0.13069271533504 − 0.49488288525101 − 0.47782997340971 0.14182700112339 0.86692768917807 0.18348888922026 0.9812260269228 − 0.059391174613883 ] R = \begin{bmatrix} -0.85907528427024 \,\,\, 0.13069271533504 \,\,\, -0.49488288525101 \\ -0.47782997340971\,\,\,\,\, 0.14182700112339 \,\,\,\,\,\, 0.86692768917807 \\ 0.18348888922026\,\,\,\, 0.9812260269228\, -0.059391174613883 \end{bmatrix} R= −0.859075284270240.13069271533504−0.49488288525101−0.477829973409710.141827001123390.866927689178070.183488889220260.9812260269228−0.059391174613883 
1.4 结论
通过几种方法进行位置分析,可以看出:当给定某一关节角度时,不同方法计算出来的末端点P的坐标值以及末端坐标系相对于基坐标系的旋转矩阵几乎一样,,表明计算成功!!















![[LeetCode]day9 203.移除链表元素](https://i-blog.csdnimg.cn/img_convert/4b4986b75666216401a7e6888726f676.jpeg)



