声明:
 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!
 
逆向分析
所有加密流程基本一样就说第一个接口其他同理。主要代码如下
function preRisk(str) { 
  
         env={ 
  
     "language": ""
 }
     browserEnv = { 
  
     "p": "pc",
     "h5_duid": null,
     "pc_duid": null,
     "hb_uid": null,
     "pc_uid": null,
     "h5_uid": null,
     "infosec_openid": null,
 }
     dimensions = a(JSON.stringify(browserEnv), 0)
     extend_param = b(JSON.stringify(env), 0)
     sign = utils.md5('{str}&dimensions=' + dimensions + '&extend_param=' + extend_param)
     return { 
  
         'extend_param': extend_param,
         'appid': "100032497",
         'business_site': 'crm_sms_online_pic',
         'version': '1.0.6',
         'dimensions': dimensions,
         'sign': sign
     }
 }
python 坐标图标识别代码
def handle_img(img_path):
    img = Image.open(img_path).convert('RGB')
    # 获取图像的原始尺寸
    width, height = img.size
    img = Image.open(img_path)
    model = YOLO(
        model='/best.pt',
        task='detect')
    results = model.predict(source=f'{img_path}', save=True)
    idx_ = 0
    # 遍历所有检测到的对象
    for result in results:
        # 同时获取边界框坐标和类别
        global target_center_points
        for (x1, y1, x2, y2), cls in zip(result.boxes.xyxy, result.boxes.cls):
            idx_ += 1
            # 将坐标转换为整数
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            center_x = (x1 + x2) // 2
            center_y = (y1 + y2) // 2
            target_center_points.append([center_x, center_y])
            cropped_area = img.crop((x1, y1, x2, y2))
            # 保存或显示截取的区域
            cropped_area.save(f"./pics/{idx_}.png") 
结果











![[STM32 - 野火] - - - 固件库学习笔记 - - -十一.电源管理系统](https://i-blog.csdnimg.cn/direct/920ea49502a9400d82306aacdcf86b04.png#pic_center)







