Python | 数据可视化中常见的4种标注及示例

news2025/7/7 19:49:48

在Python的数据可视化中,标注(Annotation)技术是一种非常有用的工具,它可以帮助用户更准确地解释图表中的数据和模式。在本文中,将带您了解使用Python实现数据可视化时应该了解的4种标注。

常见的标注方式

  • 文本标注
  • 箭头标注
  • 突出标注
  • 趋势线标注

让我们通过Python实现来了解所有这些用于数据可视化的标注技术。

文本标注

文本标注是直接添加到图表上的简短文本注释,以提供额外的上下文或突出显示重要的数据点。它们对于注意特定事件以解释趋势或注意数据中的异常情况特别有用。例如,在销售图表中,可以使用文本标注来标记新产品或营销活动的推出,以帮助查看者快速了解销售数据波动的原因。

下面是一个使用Python向图添加文本标注的示例:

import matplotlib.pyplot as plt

months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
sales = [100, 120, 90, 150, 200, 230, 210, 190, 220, 240, 250, 270]

plt.plot(months, sales, marker='o')
plt.title('Monthly Sales Data')
plt.xlabel('Month')
plt.ylabel('Sales')

# adding text annotations
plt.text('May', 200, 'Product Launch', fontsize=9, ha='center', color='red')
plt.text('Nov', 250,

在这里插入图片描述

箭头标注

箭头标注使用箭头直接指向图表上的特定数据点或区域,以突出显示关键元素或趋势。它们在突出离群值、指示重大变化或注意数据中值得注意的模式方面特别有效。例如,在营销支出与销售额的散点图中,箭头可以指向投资回报率异常高或异常低的离群值,以明确哪些数据点需要进一步关注。

示例:

marketing_spend = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
sales = [12, 25, 27, 35, 50, 52, 60, 65, 78, 85]

plt.scatter(marketing_spend, sales)
plt.xlabel('Marketing Spend (in $1000)')
plt.ylabel('Sales (in $1000)')

# adding arrow annotations
plt.annotate('High ROI', xy=(20, 25), xytext=(30, 40), arrowprops=dict(facecolor='blue', shrink=0.05))
plt.annotate('Low ROI', xy=(60, 52), xytext=(60, 90), arrowprops=dict(facecolor='red', shrink=0.05))

plt.show()

在这里插入图片描述

突出标注

突出显示区域涉及对图形的特定区域进行阴影或着色,以引起对特定时间段、范围或区域的注意。此技术用于突出显示数据中的关键部分,例如高活动期、重大事件或满足某些标准的区域。例如,在市场崩溃期间突出显示区域的股票价格的时间序列图可以使观众更容易在视觉上识别影响期。

下面是一个使用Python突出显示图形中区域的示例:

import numpy as np

dates = np.arange('2023-01', '2024-01', dtype='datetime64[M]')
stock_prices = np.random.randn(len(dates)).cumsum() + 100

plt.plot(dates, stock_prices)
plt.title('Stock Prices Over Time')
plt.xlabel('Date')
plt.ylabel('Price')

# highlighting an area
plt.axvspan('2023-06', '2023-09', color='yellow', alpha=0.3, label='Summer Period')

plt.legend()

在这里插入图片描述

趋势线标注

趋势线是添加到图形中的线,用于指示数据随时间或跨变量的一般方向或模式。它们用于可视化数据集中的趋势,平均值或关系,这有助于识别长期运动和趋势。例如,在显示学习时间和考试分数之间关系的散点图中,趋势线可以通过指示更多的学习时间通常导致更高的分数来说明是否存在正相关性。

下面是一个使用Python在图表中添加趋势线的示例:

study_hours = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
scores = np.array([50, 55, 60, 65, 70, 75, 80, 85, 90, 95])

plt.scatter(study_hours, scores)
plt.title('Study Hours vs Exam Scores')
plt.xlabel('Study Hours')
plt.ylabel('Scores')

# adding a trend line
m, b = np.polyfit(study_hours, scores, 1)
plt.plot(study_hours, m*study_hours + b, color='red', label='Trend Line')

plt.legend()

在这里插入图片描述

总结

以上这些示例涵盖了Python数据可视化中常见的4种标注方式,它们可以单独使用或组合使用,以创建更具解释性和吸引力的图表。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2260772.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【原生js案例】如何实现一个穿透字体颜色的导航

普通的导航大家都会做,像这种穿透字体的导航应该很少见吧。高亮不是通过单独设置一个active类来设置字体高亮颜色,鼠标滑过导航项,字体可以部分是黑色,不分是白色,这种效果的实现 感兴趣的可以关注下我的系列课程【we…

前端中图标的使用

1 antd 使用inconfont.cn中的图标 <template><div class"icons-list"><icon-font type"icon-tuichu" /><icon-font type"icon-facebook" /><icon-font type"icon-twitter" /></div> </templ…

回归预测 | MATLAB实现CNN-BiGRU卷积神经网络结合双向门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现CNN-BiGRU卷积神经网络结合双向门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现CNN-BiGRU卷积神经网络结合双向门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料预测效果 基本介绍 CNN-BiGRU,即卷积神经网络(CNN)与双…

医学分割数据集B超图片肝脏分割数据集labelme格式271张1类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;271 标注数量(json文件个数)&#xff1a;271 标注类别数&#xff1a;1 标注类别名称:["liver"] 每个类别标注的框数&#xf…

【目标检查】YOLO系列之:Triton 推理服务器Ultralytics YOLO11

Triton 推理服务器 1、引言2、Triton服务器2.1 什么是Triton Inference Server2.2 将YOLO11 导出为ONNX 格式2.3 设置Triton 模型库2.3.1 创建目录结构2.3.2 将导出的ONNX 模型移至Triton 资源库 2.4 运行Triton 推断服务器2.4.1 使用 Docker 运行Triton Inference Server2.4.2…

论文学习——多种变化环境下基于多种群进化的动态约束多目标优化

论文题目&#xff1a;Multipopulation Evolution-Based Dynamic Constrained Multiobjective Optimization Under Diverse Changing Environments 多种变化环境下基于多种群进化的动态约束多目标优化&#xff08;Qingda Chen , Member, IEEE, Jinliang Ding , Senior Member, …

【C++】判断能否被 3, 5, 7 整除问题解析与优化

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述&#x1f4af;老师代码实现与分析老师代码逻辑分析优点缺点 &#x1f4af;学生代码实现与分析学生代码逻辑分析优点缺点 &#x1f4af;改进与优化优化代码实现优化…

【构建工具】现代开发的重要角色

你可能有所听闻构建工具&#xff0c;但是不知道是干什么的&#xff0c;或者是开发中用到了&#xff0c;大概会使用&#xff0c;但是想理解一下具体的工作原理等&#xff0c;那么我将分享一下我对其的理解。【 我将分为两篇来讲解】。 当我们谈到构建工具时&#xff0c;可以把它…

npm或yarn包配置地址源

三种方法 1.配置.npmrc 文件 在更目录新增.npmrc文件 然后写入需要访问的包的地址 2.直接yarn.lock文件里面修改地址 简单粗暴 3.yarn install 的时候添加参数 设置包的仓库地址 yarn config set registry https://registry.yarnpkg.com 安装&#xff1a;yarn install 注意…

Unity集成Wwise并进行开发

1. 背景 项目要接入WWise&#xff0c;学习一下 1.1 与Unity自带音频系统的区别 Unity有自己的原生音乐功能&#xff1a;AduioSound。但是这个功能较为简单&#xff0c;对于音效开发人员来说并不是很友好。在一些大型的游戏中&#xff0c;音效会接入Wwise这个软件。音效开发者…

【AI知识】有监督学习之回归任务(附线性回归代码及可视化)

1. 回归的基本概念 在机器学习的有监督学习中&#xff0c;回归&#xff08;Regression&#xff09;是一种常见的任务&#xff0c;它的目标是通过观察数据来建立一个模型&#xff0c;用一个或多个自变量来预测因变量的值。 回归分析通常用于&#xff1a; a.预测&#xff0c;基于…

C语言专题之宏的基本概念

合理使用宏可以使我们的代码更加简单&#xff0c;接下来小编就来讲解宏的基本概念&#xff01; 一、宏的定义 宏定义是C/C语言中一项强大而灵活的特性&#xff0c;它允许程序员使用预处理器指令来创建简化的代码表示。这种机制不仅提高了代码的可读性和可维护性&#xff0c;还…

MySQL 复合查询(重点)

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 MySQL 复合查询&#xff08;重点&#xff09; 收录于专栏[MySQL] 本专栏旨在分享学习MySQL的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; …

WPF 控件

<div id"content_views" class"htmledit_views"><p id"main-toc"><strong>目录</strong></p> WPF基础控件 按钮控件&#xff1a; Button:按钮 RepeatButton:长按按钮 RadioButton:单选按钮 数据显示控件 Te…

Docker方式安装人人影视离线完整安装包

本文软件由网友 ルリデ 推荐&#xff1b; 上周&#xff0c;人人影视创始人宣布将人人影视二十年字幕数据开源分享 目前提供了两种使用方式&#xff1a; “在线应用” &#xff1a;意味着需要有互联网才可以使用。官方提供了网站&#xff1a;https://yyets.click “离线使用” …

opencv——(图像梯度处理、图像边缘化检测、图像轮廓查找和绘制、透视变换、举例轮廓的外接边界框)

一、图像梯度处理 1 图像边缘提取 cv2.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) 功能&#xff1a;用于对图像进行卷积操作。卷积是图像处理中的一个基本操作&#xff0c;它通过一个称为卷积核&#xff08;或滤波器&#xff09;的小矩阵在图像上…

物联网安全-ARMv8-M Trustzone 实操

前言 本文针对ARMv8m架构M23/M33 MCU安全特性使用进行介绍,以nxp LPC55xx系列和STM32L5xx系列为例,为大家阐述如何使用Trustzone技术提高物联网设备安全性,适合有一定平台安全基础的物联网设备开发人员、安全方案开发人员。 背景 为了提升平台安全性,ARM推出了ARMv8m架构…

深入理解偏向锁、轻量级锁、重量级锁

一、对象结构和锁状态 synchronized关键字是java中的内置锁实现&#xff0c;内置锁实际上就是个任意对象&#xff0c;其内存结构如下图所示 其中&#xff0c;Mark Word字段在64位虚拟机下占64bit长度&#xff0c;其结构如下所示 可以看到Mark Word字段有个很重要的作用就是记录…

《拉依达的嵌入式\驱动面试宝典》—C/CPP基础篇(五)

《拉依达的嵌入式\驱动面试宝典》—C/CPP基础篇(五) 你好,我是拉依达。 感谢所有阅读关注我的同学支持,目前博客累计阅读 27w,关注1.5w人。其中博客《最全Linux驱动开发全流程详细解析(持续更新)-CSDN博客》已经是 Linux驱动 相关内容搜索的推荐首位,感谢大家支持。 《拉…

geoserver(1) 发布sql 图层 支持自定义参数

前提使用postgis 数据库支持关联 join 支持 in,not in,like,及其他sql原生函数 新增sql图层 编写自定义sql 编辑sql语句必须输出带有geom数据 正则表达式去除 设置id以及坐标参考系 预览sql图层效果 拼接sql参数 http://xxx.com/geoserver/weather/wms?SERVICEWMS&VERSI…