【Python】数据可视化之热力图

news2025/5/17 7:41:16

 热力图(Heatmap)是一种通过颜色深浅来展示数据分布、密度和强度等信息的可视化图表。它通过对色块着色来反映数据特征,使用户能够直观地理解数据模式,发现规律,并作出决策。

 

目录

基本原理

sns.heatmap

代码实现


基本原理

热力图本质上是一个数值矩阵,图上每一个色块都代表一个数值。通过离散数值、权重算法与分析模型等技术手段,将用户行为频度或数据密度以色块的形式展现出来。在设计时,需要指定颜色映射的规则,例如较大的值可以由较深的颜色或偏暖的颜色表示,而较小的值则由较浅的颜色或较冷的颜色表示。

两个变量之间相关系数的计算公式为:

$\mathrm{p}_{\mathrm{X}_1\mathrm{X}_2}=\frac{\mathrm{Cov}(\mathrm{X}_1,\mathrm{X}_2)}{\sqrt{\mathrm{DX}_1,\mathrm{DX}_2}}=\frac{\mathrm{EX}_1\mathrm{X}_2-\mathrm{EX}_1*\mathrm{EX}_2}{\sqrt{\mathrm{DX}_1*\mathrm{DX}_2}}$

ρ表示相关系数,Cov表示协方差,E表示数学期望/均值。值得注意的是,该相关系数主要用以量化变量之间的线性关联强度;具体而言,当相关系数较高时,它指示了变量间存在较强的线性相关性。然而,对于相关系数较低的两个变量而言,这仅仅表明它们之间的线性相关程度较弱,而并非意味着这两个变量之间完全不存在其他类型的关联,如非线性(如曲线)关系或其他复杂的相关性。因此,在解释相关系数时需谨慎,避免过度简化或误读变量间的关系。

sns.heatmap

sns.heatmap 是 Seaborn 库中的一个非常有用的函数,用于绘制热力图(Heatmap)。热力图是一种通过颜色深浅来表示数据大小的图形,常用于展示矩阵或表格数据的分布和关系。在数据可视化中,热力图尤其适合展示变量之间的相关性、数据的聚类情况或数据的密度分布等。

sns.heatmap涉及到一些主要的参数:

  • vmin, vmax:这两个参数用于设置热力图中颜色映射的最小值和最大值,可以调整颜色映射的范围以更好地展示数据。
  • cmap:指定颜色映射表(colormap),用于控制热力图中颜色的分布和变化。
  • annot:如果设置为True,则在每个单元格中显示数据值。也可以是一个形状与数据相同的数组,用于自定义注释内容。
  • fmt:当annot为True时,用于设置注释的格式化字符串。
  • linewidths:设置热力图单元格之间的线条宽度。
  • linecolor:设置热力图单元格之间线条的颜色。
  • cbar:是否显示颜色条。
  • square:如果为True,则强制热力图的每个单元格都是正方形的。
  • mask:一个布尔数组或DataFrame,用于指定哪些单元格应该被屏蔽(不显示)。这对于绘制下三角或上三角矩阵特别有用。

代码实现

# 生成一个3x3的随机数组
values = np.random.rand(3, 3)
# 设置x轴标签
x_ticks = ['x-1', 'x-2', 'x-3']
# 设置y轴标签
y_ticks = ['y-1', 'y-2', 'y-3'] 
# 使用seaborn库绘制热图,并设置x轴和y轴标签
ax = sns.heatmap(values, xticklabels=x_ticks, yticklabels=y_ticks)
# 设置图表标题
ax.set_title('3x3 Heatmap') 
# 设置x轴标签
ax.set_xlabel('x label')  
# 设置y轴标签
ax.set_ylabel('y label')
# 显示图表
plt.show()

uniform_data = np.random.rand(10, 12) 
ax = sns.heatmap(uniform_data)

通过annot参数设置可以在小方格中显示数值

# 生成一个10行12列的随机数矩阵
uniform_data = np.random.rand(10, 12)
# 使用seaborn库中的heatmap函数绘制热力图,annot参数设置为True表示在热力图上显示数据值
ax = sns.heatmap(uniform_data, annot=True)

可以创建一个与相关系数矩阵相同大小的布尔矩阵,用于遮罩,实现更加简化美观的效果。

布尔矩阵(Boolean Matrix)是数学中的一个重要概念,它指的是元素只取0或1的矩阵,因此也被称为0-1矩阵。布尔矩阵在计算机科学、编码理论、网络理论等领域有着广泛的应用。在数学上,布尔矩阵通常使用大写字母(如A, B, C等)表示,矩阵中的元素使用小写字母加下标(如a_ij)表示,其中i表示行号,j表示列号。

# 导入ascii_letters模块
from string import ascii_letters
# 设置seaborn的样式为white
sns.set(style="white")
# 创建一个随机数生成器
rs = np.random.RandomState(33)
# 创建一个100行26列的DataFrame,数据为正态分布随机数
d = pd.DataFrame(data=rs.normal(size=(100, 26)),
                 columns=list(ascii_letters[26:]))
# 计算DataFrame的相关系数矩阵
corr = d.corr()
# 创建一个与相关系数矩阵相同大小的布尔矩阵,用于遮罩
mask = np.zeros_like(corr, dtype=bool)
# 将上三角矩阵的元素设置为True
mask[np.triu_indices_from(mask)] = True
# 创建一个11x9的子图
f, ax = plt.subplots(figsize=(11, 9))
# 创建一个颜色映射
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# 绘制热力图,使用遮罩,颜色映射,最大值为0.3,中心值为0,方格,边框宽度为0.5,颜色条缩小为0.5
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2177875.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

「OC」探索 KVC 的基础与应用

「OC」KVC的初步学习 文章目录 「OC」KVC的初步学习前言介绍KVC的相关方法key和keyPath的区别KVC的工作原理KVO的setValue:forKey原理KVO的ValueforKey原理 在集合之中KVC的用法1. mutableArrayValueForKey: 和 mutableArrayValueForKeyPath:2. mutableSetValueForKey: 和 muta…

【源码+文档+调试讲解】无人超市系统python

摘 要 随着科技的不断进步,无人超市成为了零售行业的新兴趋势。无人超市管理系统是支撑这一新型商业模式的关键软件基础设施。该系统采用python技术和MySQL数据库技术以及Django框架进行开发。通过高度自动化和智能化的方式,允许消费者在没有收银员的情…

WordPress LearnPress插件 SQL注入复现(CVE-2024-8522)

0x01 产品描述: LearnPress 是一款功能强大的 WordPress LMS(学习管理系统)插件,适用于创建和销售在线课程。凭借其直观的界面和丰富的功能,无论您是否具备编程背景,都能轻松搭建起在线教育网站。学会如何使…

【若依RuoYi-Vue | 项目实战】帝可得后台管理系统(三)

文章目录 一、商品管理1、需求说明2、生成基础代码(1)创建目录菜单(2)配置代码生成信息(3)下载代码并导入项目 3、商品类型改造(1)基础页面 4、商品管理改造(1&#xff0…

【YOLO目标检测车牌数据集】共10000张、已标注txt格式、有训练好的yolov5的模型

目录 说明图片示例 说明 数据集格式:YOLO格式 图片数量:10000(2000张绿牌、8000张蓝牌) 标注数量(txt文件个数):10000 标注类别数:1 标注类别名称:licence 数据集下载:车牌数据…

docker 部署 Seatunnel 和 Seatunnel Web

docker 部署 Seatunnel 和 Seatunnel Web 说明: 部署方式前置条件,已经在宿主机上运行成功运行文件采用挂载宿主机目录的方式部署SeaTunnel Engine 采用的是混合模式集群 编写Dockerfile并打包镜像 Seatunnel FROM openjdk:8 WORKDIR /opt/seatunne…

在github上,如何只下载选中的文件?

GitHub官方不直接支持下载子目录,但可以使用特定的第三方工具或脚本来实现这一需求。 总而言之一句话:需要下载插件!!!具体实操步骤如下: 1.打开谷歌浏览器右上角的管理扩展程序: 2.搜索GitZi…

NLP任务之预测最后一个词

目录 1.加载预训练模型 2 从本地加载数据集 3.数据集处理 4.下游任务模型 5.测试代码 6.训练代码 7.保存训练好的模型 8. 加载 保存的模型 1.加载预训练模型 #加载预训练模型 from transformers import AutoTokenizer#预训练模型:distilgpt2 #use_fast…

《无机杀手》制作团队选择Blender的原因分析

《无机杀手》(Murder Drones)是一部备受欢迎的动画短片,其制作团队选择使用Blender软件进行制作,这一选择背后有着多方面的原因。【成都渲染101--blender渲染农场邀请码6666提供文案参考】 开源且免费 Blender是一个开源且免费的…

什么是数字化转型?数字化转型对企业有哪些优势?

一、什么是数字化转型? 定义: 数字化转型是指企业或组织将传统业务转化为数字化业务,利用人工智能、大数据、云计算、区块链、5G等数字技术提升业务效率和质量的过程。通俗来说,就是将数字技术应用到企业的各个方面,…

贝锐蒲公英网盘首发,秒建私有云,高速远程访问

虽然公共网盘带来了不少便利,但是大家对隐私泄露和重要数据泄密的担忧也随之增加。如果想要确保数据安全,自建私有云似乎是一条出路,然而面对搭建私有云的复杂步骤,许多人感到力不从心,NAS设备的成本也往往让人望而却步…

【MySQL】数据库中的内置函数

W...Y的主页 😊 代码仓库分享 💕 目录 函数 日期函数 字符串函数 数学函数 ​编辑 其它函数 MySQL数据库提供了大量的内置函数,这些函数可以帮助你执行各种操作,如字符串处理、数值计算、日期和时间处理等! 函数…

云计算Openstack Keystone

OpenStack Keystone是OpenStack平台中的一个核心组件,主要负责身份认证和授权管理服务。以下是关于OpenStack Keystone的详细介绍: 一、作用 身份认证:Keystone为OpenStack平台提供统一的身份认证服务,管理所有用户(…

ElasticSearch系列:【Win10环境(版本8.11.1) 】elasticsearch+kibana纪实

一、环境 安装环境:win10 JDK:1.8 elasticsearch:8.11.1 kibana:8.11.1 下载地址1(elasticsearchkibana):Past Releases of Elastic Stack Software | Elastic i下载地址2(k分…

RS HMP4040 直流电源

R&S HMP404 直流电源 苏州新利通仪器仪表 产品综述 单台仪器中最多四个通道 R&SHMP4000 直流电源具有三个或四个输出通道,每个通道的输出电流高达 10 A,主要设计用于工业应用,例如: -生产测试 -维护 -工程实验室 这些…

关于git分支冲突问题

什么是冲突 在Git中,冲突是指两个或多个开发者对同一文件统一部份进行了不同的修改,并且在合并这些修改时,Git无法自动确定应该采用哪种修改而产生的情况。 分支冲突 如何出现并解决 在一个版本时,有一个master分支&#xff0c…

JAVA甜蜜升级情侣专属扭蛋机游戏系统小程序源码

甜蜜升级!情侣专属扭蛋机游戏系统,让爱更有趣💖 🎉 开篇:爱的游戏新玩法 在爱情的旅途中,我们总在寻找那些能让彼此心跳加速、笑容满面的瞬间。现在,“甜蜜升级情侣专属扭蛋机游戏系统”为你和…

用友畅捷通-TPlus FileUploadHandler.ashx 任意文件上传

0x01 产品描述: ‌用友畅捷通-TPlus‌是由用友集团成员企业畅捷通公司开发的一款企业级财务管理工具,旨在帮助企业实现财务管理的现代化和智能化。作为畅捷通旗下的核心产品,TPlus集成了财务核算、资金管理、预算控制等多项核心功能&#xff…

spring boot 项目中redis的使用,key=value值 如何用命令行来查询并设置值。

1、有一个老项目,用到了网易云信,然后这里面有一个AppKey,然后调用的时候要在header中加入这些标识,进行与服务器进行交互。 2、开发将其存在了redis中,一开始的时候,我们测试用的老的key,然后提…

结合创新!小波变换+注意力机制,实现100%分类准确率

小波变换是一种先进的信号分析技术,它擅长捕捉信号的局部特征,但有时可能会忽略数据中的关键信息。为了克服这一局限,我们引入了注意力机制,这一机制能够强化模型对数据重要部分的关注。通过将小波变换与注意力机制相结合&#xf…