二叉搜素树简单介绍
二叉搜索树又称二叉排序树,是具有以下性质的二叉树:
-  若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 
-  若它的右子树不为空,则右子树上所有节点的值都大于根节点的值 
-  它的左右子树也分别为二叉搜索树 
注意:空树也是二叉搜索树
二叉搜素树的模型
- K模型:
K模型即只有key作为关键字,节点中只需要存储Key即可,关键字即为需要搜索到的值。
 比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
- KV模型:
每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。
 该种方式在现实生活中非常常见:
 比如
 英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;
再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出
 现次数就是<word, count>就构成一种键值对。
K模式和KV模式实现上基本一样,就是节点中存储的是key还是<key,val>的区别
二叉搜素树的性能
二叉搜索树的性能取决于树的高度,因为一次查找最多查找高度次,而删除和插入也是在查找的基础上增加了一些O(1)的操作
 在最理想的情况下,树是完全平衡的,平均查找、插入和删除的时间复杂度O(log N)。
 但在最坏的情况下,树可能退化成一个链表,此时这些操作的时间复杂度将增加到O(N)。
例:
 
全部的实现代码放在了文章末尾
准备工作
创建两个文件,一个头文件BSTree.hpp,一个源文件test.cpp
【因为模板的声明和定义不能分处于不同的文件中,所以把成员函数的声明和定义放在了同一个文件BSTree.hpp中】
-  RBTree.hpp:存放包含的头文件,命名空间的定义,成员函数和命名空间中的函数的定义 
-  test.cpp:存放main函数,以及测试代码 
包含头文件
iostream:用于输入输出
类的成员变量

构造函数和拷贝构造
构造函数没什么好说的,默认构造就行了
BSTree() 
	:_root(nullptr)
{}
拷贝构造:
 因为节点都是从堆区new出来的,所以要深拷贝
使用递归实现深拷贝:
 因为拷贝构造不能有多余的参数,但是递归函数又必须使用参数记录信息
 所以再封装一个成员函数,专门用来递归拷贝:
 
 然后在拷贝构造里面调用一下这个函数就行了
拷贝构造
BSTree(const BSTree& obj)
{
	_root = Copy(obj._root);
}
swap和赋值运算符重载
交换两颗二叉搜索树的本质就是交换两颗数的资源(数据),而它们的资源都是从堆区申请来的,然后用指针指向这些资源
 
并不是把资源存储在了二叉搜索树对象中
所以资源交换很简单,直接交换_root指针的指向即可
void Swap(BSTree& obj)
{
	std::swap(_root, obj._root);
}
赋值运算符重载
BSTree& operator=(BSTree obj)
{
	this->Swap(obj);
	return *this;
}
为什么上面的两句代码就可以完成深拷贝呢?
 这是因为:
使用了传值传参,会在传参之前调用拷贝构造,再把拷贝构造出的临时对象作为参数传递进去
赋值运算符的左操作数,*this再与传入的临时对象obj交换,就直接完成了拷贝
在函数结束之后,存储在栈区的obj再函数结束之后,obj生命周期结束
obj调用析构函数,把指向的从*this那里交换来的不需要的空间销毁
析构函数
使用递归遍历,把所有从堆区申请的节点都释放掉:
 因为析构函数不能有多余的参数,但是递归函数又必须使用参数记录信息
 所以再封装一个成员函数,专门用来递归释放:
 
 然后在拷贝构造里面调用一下这个函数就行了
析构函数
~BSTree()
{
	Destroy(_root);
	_root = nullptr;
}
find
具体流程:
 从根节点开始,将目标值(传入的key)与当前节点的key进行比较。
 如果目标值小于当前节点值,则在左子树中继续查找;
 如果目标值大于当前节点值,则在右子树中继续查找。
这个过程一直进行,直到找到与目标值或者到达空节点为止。
把上述过程转成代码:
 
insert
插入的具体过程如下:
-  树为空,则直接新增节点,赋值给二叉搜索树的成员变量 _root指针
-  树不空,则按照查找( find)的逻辑找到新节点应该插入的位置
-  树不空,如果树中已经有了一个节点的key值与要插入的节点的key相同,就插入失败 
这个过程一直进行,直到找到与传入的key相等的节点或者到达空节点为止。
把上述过程转成代码:
 
erase
删除操作较为复杂,需要先在数中找到要删除的节点,再根据要删除节点的子节点数量进行不同的处理:
-  如果要删除节点没有子节点,则直接删除该节点。 
-  如果要删除节点有一个子节点(子树),则用其子节点(子树)替换该节点。 
-  如果要删除节点有两个子节点(子树) 
 在右子树中找到最小值的节点(或左子树中找到最大值的节点)来替换待删除节点,然后删除那个最小值(或最大值)的节点
情况1可以和情况2合并一下
把上述过程转成代码:
bool Erase(const K& key)
{
	Node* cur = _root;从根节点开始
	Node* parent = nullptr;
     
    先找到要删除的节点(cur)
	while (cur)如果到了空节点就结束循环
	{
		if (cur->_key < key) 目标值`大于`当前节点值,则在`右子树`中继续查找
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_key > key) 目标值'小于'当前节点值,则在'左子树'中继续查找
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			break;找到要删除的节点了,结束循环
		}
	}
	如果找到空节点了,还没找到要删除的节点
	就说明树里面本来就没有这个key,不需要删除
	if (cur == nullptr)
	{
		return false;  删除失败,返回false
	}
	else
	{
		如果 左 子树为空, 右 子树不为空(或者左右都为空)
		即只有右子节点(右子树)或者没有子节点
		if (cur->_left == nullptr)
		{
			如果父亲节点为空,就表示cur为根节点
			if (parent == nullptr)
			{
				使用右子节点,代替根节点
				_root = cur->_right;
			}
			else  根据cur与它的父亲节点的链接关系
			{
				if (cur == parent->_left)
				{
					使用右子节点,代替cur
					parent->_left = cur->_right;
				}
				else
				{
					使用右子节点,代替cur
					parent->_right = cur->_right;
				}
			}
			delete cur;  删除cur节点,即要删除的节点
		}
		如果 右 子树为空, 左 子树不为空(或者左右都为空)
		即只有左子节点(左子树)或者没有子节点
		else if (cur->_right == nullptr)
		{
			如果父亲节点为空,就表示cur为根节点
			if (parent == nullptr)
			{
				使用左子节点,代替根节点
				_root = cur->_left;
			}
			else  根据cur与它的父亲节点的链接关系
			{
				if (cur == parent->_left)
				{
					使用左子节点,代替cur
					parent->_left = cur->_left;
				}
				else
				{
					使用左子节点,代替cur
					parent->_right = cur->_left;
				}
			}
			delete cur;  删除cur节点,即要删除的节点
		}
		else  如果左右子树都不为nullptr
		{
			去cur(要删除的节点)的右子树中找key最小的节点
			Node* tmp = cur->_right;
			Node* prev = cur;
			二叉搜索树的最小节点,一定在这颗树的最左边
			while (tmp->_left)  所以一直往左走,直到左子树为nullptr
			{
				prev = tmp;
				tmp = tmp->_left;  往左走
			}
			用右子树中key最小的节点的数据,替换cur中的数据
			也就相当于把cur(要删除的节点)删除了
			cur->_key = tmp->_key;
			cur->_val = tmp->_val;
			如果prev == cur,就说明tmp就是key最小的节点了
			此时tmp在cur(prev)的右边
			if (prev == cur)
			{
				把cur(prev)的  右边  连上tmp的右子树
				因为tmp虽然是最左节点,但是它有可能还有右孩子
				cur->_right = tmp->_right;
				delete tmp;
			}
			else
			{
				把prev的  左边  连上tmp的右子树
				因为tmp虽然是最左节点,但是它有可能还有右孩子
				prev->_left = tmp->_right;
				delete tmp;
			}
		}
	}
	return true;  删除成功,返回true
}
empty
bool Empty()
{
    如果_root为空,那么树就是空的
	return _root == nullptr;
}
size
使用递归实现二叉搜索树的节点个数统计:
 因为我们经常使用的stl的容器的size都是没有参数的,但是递归函数又必须使用参数记录信息
 所以再封装一个成员函数,专门用来递归:
 
 然后再size里面调用一下就行了
size_t Size()
{
	return _Size(_root);
}
中序遍历
中序遍历的递归函数:

 然后再调用递归函数
void InOrder()
{
	_InOrder(_root);
}
全部代码
#include<iostream>
using namespace std;
template<class K, class V>
struct BSTreeNode
{
	K _key;
	V _val;
	BSTreeNode<K, V>* _left;
	BSTreeNode<K, V>* _right;
	BSTreeNode(const K& key, const V& val)
		:_left(nullptr)
		, _right(nullptr)
	{
		_key = key;
		_val = val;
	}
};
template<class K, class V>
class BSTree
{
	typedef BSTreeNode<K, V> Node;
public:
	BSTree() :_root(nullptr)
	{}
	BSTree(const BSTree& obj)
	{
		_root = Copy(obj._root);
	}
	BSTree& operator=(BSTree obj)
	{
		this->Swap(obj);
		return *this;
	}
	~BSTree()
	{
		Destroy(_root);
		_root = nullptr;
	}
	void Swap(BSTree& obj)
	{
		std::swap(_root, obj._root);
	}
	bool Insert(const K& key, const V& val)
	{
		if (_root == nullptr)//树为空,则直接新增节点
		{
			//赋值给二叉搜索树的成员变量`_root`指针
			_root = new Node(key, val);
			return true;//返回true,代表插入成功
		}
		Node* cur = _root;//从根节点开始
		//定义parent来保存cur的父亲节点
		//假设根节点的父亲节点为nullptr
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_key < key)//目标值`大于`当前节点值,则在`右子树`中继续查找
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)//目标值'小于'当前节点值,则在'左子树'中继续查找
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		Node* newnode = new Node(key, val);
		if (parent->_key > key)
		{
			parent->_left = newnode;
		}
		else
		{
			parent->_right = newnode;
		}
		return true;
	}
	Node* Find(const K& key)
	{
		Node* cur = _root;//从根节点开始
		while (cur)//如果到了空节点就结束循环
		{
			if (cur->_key < key)//目标值`大于`当前节点值,则在`右子树`中继续查找
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)//目标值'小于'当前节点值,则在'左子树'中继续查找
			{
				cur = cur->_left;
			}
			else//如果相等,就找到了
			{
				return cur;
			}
		}
		return nullptr;//找不到就返回nullptr
	}
	bool Erase(const K& key)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				break;
			}
		}
		if (cur == nullptr)
			return false;
		else
		{
			if (cur->_left == nullptr)
			{
				if (parent == nullptr)
				{
					_root = cur->_right;
				}
				else
				{
					if (cur == parent->_left)
						parent->_left = cur->_right;
					else
						parent->_right = cur->_right;
				}
				delete cur;
			}
			else if (cur->_right == nullptr)
			{
				if (parent == nullptr)
				{
					_root = cur->_left;
				}
				else
				{
					if (cur == parent->_left)
						parent->_left = cur->_left;
					else
						parent->_right = cur->_left;
				}
				delete cur;
			}
			else
			{
				Node* tmp = cur->_right;
				Node* prev = cur;
				while (tmp->_left)
				{
					prev = tmp;
					tmp = tmp->_left;
				}
				cur->_key = tmp->_key;
				cur->_val = tmp->_val;
				if (prev == cur)
				{
					cur->_right = tmp->_right;
					delete tmp;
				}
				else
				{
					prev->_left = tmp->_right;
					delete tmp;
				}
			}
		}
		return true;
	}
	void InOrder()
	{
		_InOrder(_root);
	}
	bool Empty()
	{
		return _root == nullptr;
	}
	size_t Size()
	{
		return _Size(_root);
	}
	size_t Height()
	{
		return _Height(_root);
	}
private:
	Node* _root = nullptr;
	size_t _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int left = _Height(root->_left);
		int right = _Height(root->_right);
		return left > right ? left + 1 : right + 1;
	}
	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;
		Node* newnode = new Node(root->_key, root->_val);
		newnode->_left = Copy(root->_left);
		newnode->_right = Copy(root->_right);
		return newnode;
	}
	//使用  后序遍历  释放
	void Destroy(Node* root)
	{
		//空节点不需要释放,直接返回
		if (root == nullptr)
			return;
		Destroy(root->_left);//递归释放左子树
		Destroy(root->_right);//递归释放右子树
		delete root;//释放根节点
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);//遍历左子树
		//打印信息
		cout << root->_key << ":" << root->_val << endl;
		_InOrder(root->_right);//遍历右子树
	}
	//直接遍历二叉树进行节点统计
	size_t _Size(Node* root)
	{
		if (root == nullptr)
			return 0;
		//统计左子树节点个数
		int left = _Size(root->_left);
		//统计右子树节点个数
		int right = _Size(root->_right);
		return left + right + 1;//1是当前节点
	}
};


















