目录
一、介绍
二、传感器原理
1.原理图
2.引脚描述
3.工作原理介绍
三、程序设计
main.c文件
ultrasonic.h文件
ultrasonic.c文件
四、实验效果
五、资料获取
项目分享
一、介绍
HC-SR04超声波传感器是通过发送和接收超声波,利用时间差和声音传播速度,计算出模块到前方障碍物的距离的一种传感器模块。与蝙蝠寻找猎物的回声定位基本原理相同,可以广泛应用于无损测量、水文液位测量、工业场地等领域。

以下是超声波传感器的参数:
| 型号 | HC-SR04 | 
| 工作电压 | DC 5V | 
| 工作电流 | 3.3mA | 
| 工作温度 | -40~85℃ | 
| 输出方式 | GPIO | 
| 探测距离 | 2cm~600cm | 
| 探测精度 | 3mm | 
哔哩哔哩视频链接:
HC-SR04超声波传感器详解(STM32)
(资料分享见文末)
二、传感器原理
1.原理图

模块包括超声波发射器、接收器与控制电路。
2.引脚描述

| 引脚名称 | 描述 | 
| VCC | 供给电压DC 5V | 
| GND | 地线 | 
| TRIG | 触发控制信号输入 | 
| ECHO | 回响信号输出 | 
3.工作原理介绍
传感器发射器向某一个确定的方向发射超声波的同时进行计时,超声波在碰触到障碍物之后会返回给超声波接收器一个反射波,此时停止计时,将时间纪录为 t。根据速度距离公式,结合超声波的传播速度与时间 t,可以推算出超声波发射点与所测量障碍物之间的距离为S=340t/2

注意:测量周期应为60ms以上,以防止发射信号对回响信号的影响,被测物体的面积应不小于0.5平方米且尽量要求平整,否则影响结果
三、程序设计
1.使用STM32F103C8T6读取HC-SR04超声波传感器采集的距离数据,通过串口发送至电脑
2.将读取得到距离信息数据同时在OLED上显示
| TRIG | PA0 | 
| ECHO | PA1 | 
| OLED_SCL | PB11 | 
| OLED_SDA | PB10 | 
| 串口 | 串口1 | 
main.c文件
#include "stm32f10x.h"
#include "led.h"
#include "usart.h"
#include "delay.h"
#include "oled.h"
#include "ultrasonic.h"
#include "timer.h"
/*****************辰哥单片机设计******************
											STM32
 * 项目			:	HC-SR04超声波传感器实验                     
 * 版本			:   V1.0
 * 日期			:   2024.8.27
 * MCU			:	STM32F103C8T6
 * 接口			:	参看ultrasonic.h							
 * BILIBILI	    :	辰哥单片机设计
 * CSDN			:	辰哥单片机设计
 * 作者			:	辰哥 
**********************BEGIN***********************/
float distance;
int main(void)
{ 
	
  SystemInit();//配置系统时钟为72M	
	delay_init(72);
	LED_Init();
	LED_On();
	Ultrasonic_Init();
	USART1_Config();//串口初始化
	
	OLED_Init();
	printf("Start \n");
	delay_ms(1000);
	
	OLED_Clear();
	//显示“距离:”
	OLED_ShowChinese(0,0,0,16,1);
	OLED_ShowChinese(16,0,1,16,1);
	OLED_ShowChar(32,0,':',16,1);
	OLED_ShowString(60,20,"cm",16,1);
  while (1)
  {
		LED_Toggle();
		distance = UltrasonicGetLength();
		OLED_ShowNum(40,20,distance,2,16,1);
		delay_ms(50);	//延时50ms
  }
}ultrasonic.h文件
#ifndef __ULTRASONIC_H
#define	__ULTRASONIC_H
#include "stm32f10x.h"
#include "adcx.h"
#include "delay.h"
#include "math.h"
/*****************辰哥单片机设计******************
											STM32
 * 文件			:	HC-SR04超声波传感器h文件                   
 * 版本			:   V1.0
 * 日期			:   2024.8.27
 * MCU			:	STM32F103C8T6
 * 接口			:	见代码							
 * BILIBILI	    :	辰哥单片机设计
 * CSDN			:	辰哥单片机设计
 * 作者			:	辰哥
**********************BEGIN***********************/
/***************根据自己需求更改****************/
// ULTRASONIC GPIO宏定义
#define		ULTRASONIC_GPIO_CLK								RCC_APB2Periph_GPIOA
#define 	ULTRASONIC_GPIO_PORT							GPIOA
#define 	ULTRASONIC_TRIG_GPIO_PIN					GPIO_Pin_0	
#define 	ULTRASONIC_ECHO_GPIO_PIN					GPIO_Pin_1	
#define 	TRIG_Send  PAout(0)
#define 	ECHO_Reci  PAin(1)
/*********************END**********************/
void Ultrasonic_Init(void);
float UltrasonicGetLength(void);
void OpenTimerForHc(void);
void CloseTimerForHc(void); 
u32 GetEchoTimer(void);
#endif /* __ADC_H */
ultrasonic.c文件
#include "ultrasonic.h"
#include "timer.h"
/*****************辰哥单片机设计******************
											STM32
 * 文件			:	HC-SR04超声波传感器c文件                   
 * 版本			:   V1.0
 * 日期			:   2024.8.27
 * MCU			:	STM32F103C8T6
 * 接口			:	见代码							
 * BILIBILI	    :	辰哥单片机设计
 * CSDN			:	辰哥单片机设计
 * 作者			:	辰哥
**********************BEGIN***********************/
//超声波计数
u16 msHcCount;
void Ultrasonic_Init(void)
{
		GPIO_InitTypeDef GPIO_InitStructure;
		
		RCC_APB2PeriphClockCmd (ULTRASONIC_GPIO_CLK, ENABLE );			// 打开连接 超声波传感器 的单片机引脚端口时钟
		GPIO_InitStructure.GPIO_Pin = ULTRASONIC_TRIG_GPIO_PIN;			// 配置连接 传感器TRIG 的单片机引脚模式
		GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;						// 设置为推挽输出
		GPIO_Init(ULTRASONIC_GPIO_PORT, &GPIO_InitStructure);				// 初始化 
		GPIO_InitStructure.GPIO_Pin = ULTRASONIC_ECHO_GPIO_PIN;			// 配置连接 传感器ECHO 的单片机引脚模式
		GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;				// 设置为浮空输入输入
		GPIO_Init(ULTRASONIC_GPIO_PORT, &GPIO_InitStructure);				// 初始化 
	
		TIM4_Int_Init(1000-1,72-1);
}
//打开定时器4
static void OpenTimerForHc()  
{
   TIM_SetCounter(TIM4,0);
   msHcCount = 0;
   TIM_Cmd(TIM4, ENABLE); 
}
//关闭定时器4
static void CloseTimerForHc()    
{
   TIM_Cmd(TIM4, DISABLE); 
}
//获取定时器4计数器值
u32 GetEchoTimer(void)
{
   u32 t = 0;
   t = msHcCount*1000;
   t += TIM_GetCounter(TIM4);
   TIM4->CNT = 0;  
   delay_ms(50);
   return t;
}
 
//通过定时器4计数器值推算距离
float UltrasonicGetLength(void)
{
   u32 t = 0;
   int i = 0;
   float lengthTemp = 0;
   float sum = 0;
   while(i!=5)
   {
      TRIG_Send = 1;      
      delay_us(20);
      TRIG_Send = 0;
      while(ECHO_Reci == 0);      
      OpenTimerForHc();        
      i = i + 1;
      while(ECHO_Reci == 1);
      CloseTimerForHc();        
      t = GetEchoTimer();        
      lengthTemp = ((float)t/58.0);//cm
      sum = lengthTemp + sum ;
        
    }
    lengthTemp = sum/5.0;
    return lengthTemp;
}四、实验效果




















