愿武艺晴小朋友一定得每天都开心
当我们测序拿得到各个样本中基因的表达值,就可以用基因表达值来表征样本间的相关性
代码如下:
#样本间相似性:R值 相关性 捕获到的基因在两个样本间表达趋势一致性
 exp_RNA <- AverageExpression(fasting_memory,
                              group.by = "Sample",layer = "data")  #CPM值来自data图层
 exp_RNA <- as.data.frame(exp_RNA) 
 colnames(exp_RNA) <- c("fed","health","memory_10d","memory_35d","memory_66d")
 library(ArchR)
 library(viridis)
 head(exp_RNA)
df<-exp_RNA[,c(1,5)] #依次计算各个组
 head(df)
#为了提高数据质量和准确性,使用两组间表达值都非0的基因用于R值的计算
 df<-subset.data.frame(df,df$fed!=0) 
 df<-subset.data.frame(df,df$memory_66d!=0)
cor(df[,2],df[,1])
library(ggrepel)
 df$gene <- rownames(df)
 df$slope <- df$memory_66d/df$fed #斜率代表在66d组中跟fed组间的表达差别很大
 head(df)
label <- subset.data.frame(df,df$slope>1000)
 head(label)
ggPoint(x = df$fed,y = df$memory_66d,size=1,
         title = "r=0.41",
         colorDensity = TRUE,
         continuousSet = "solarExtra",
         ylabel = "memory_66d:log2(CPM+1)", 
         xlabel = "fed:log2(CPM+1)",
         xlim = c(0,170),
         ylim = c(0,170))+ mytheme+
   geom_hline(yintercept = 40, lty = "dashed")+ 
   geom_vline(xintercept = 40, lty = "dashed")
#图的样子:

![[SDK]-组合框 和 列表框控件](https://i-blog.csdnimg.cn/direct/52ae953251da42e7975f7a6eae3afcac.gif)







![[Xpath] Xpath基础知识](https://i-blog.csdnimg.cn/direct/5b06e4310b5e4c31a6ac7169c8c9d2c2.png)






![[数据集][目标检测]井盖丢失未盖破损检测数据集VOC+YOLO格式2890张5类别](https://i-blog.csdnimg.cn/direct/31cf5cd2f3cd4257a13e5fb30d7908a0.png)



