线性DP
 
董晓老师的讲解是从下标0开始算的,其实我们从1开始也可以,我感觉这里从1开始更好理解。是从下往上计算的。j负责列的计算,往上计算时逐步收窄横向的范围,i是纵向的从下往上算,
 下面是内存布局
 
 下面是逻辑上的布局
 
 下面的代码是优化之后的代码,正常来说是f数组存储总和sum,w数组是存储输入的数字,然后f初始值是0的,每次加上w里面的数,
  
     
      
       
       
         f 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         = 
        
       
         m 
        
       
         a 
        
       
         x 
        
       
         ( 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         + 
        
       
         w 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         , 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         + 
        
       
         w 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         ) 
        
       
      
        f[i][j] = max(f[i+1][j] + w[i][j] ,f[i+1][j+1] + w[i][j] ) 
       
      
    f[i][j]=max(f[i+1][j]+w[i][j],f[i+1][j+1]+w[i][j])
 优化为
  
     
      
       
       
         f 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         = 
        
       
         m 
        
       
         a 
        
       
         x 
        
       
         ( 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         , 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         ) 
        
       
         + 
        
       
         w 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
      
        f[i][j] = max(f[i+1][j] ,f[i+1][j+1] ) + w[i][j] 
       
      
    f[i][j]=max(f[i+1][j],f[i+1][j+1])+w[i][j]
 然后发现w数组和f数组作用雷同,直接用f存储输入的三角形,然后累加的时候覆盖上面的值就完事儿了
 就直接优化为
  
     
      
       
       
         f 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         = 
        
       
         m 
        
       
         a 
        
       
         x 
        
       
         ( 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         , 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         ) 
        
       
         + 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
      
        f[i][j] = max(f[i+1][j],f[i+1][j+1]) + f[i][j] 
       
      
    f[i][j]=max(f[i+1][j],f[i+1][j+1])+f[i][j] ;.
 等价于
  
     
      
       
       
         f 
        
       
         [ 
        
       
         i 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         + 
        
       
         = 
        
       
         m 
        
       
         a 
        
       
         x 
        
       
         ( 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         ] 
        
       
         , 
        
       
         f 
        
       
         [ 
        
       
         i 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         [ 
        
       
         j 
        
       
         + 
        
       
         1 
        
       
         ] 
        
       
         ) 
        
       
      
        f[i][j] += max(f[i+1][j],f[i+1][j+1]) 
       
      
    f[i][j]+=max(f[i+1][j],f[i+1][j+1]);
#include<iostream>
#include<algorithm>
#define N 510
using namespace std;
int n;
int f[N][N];
int main(){
    cin >> n ;
    for(int i = 1;i <= n; ++i){
        for(int j = 1; j <= i; ++j){
            cin >> f[i][j];
        }
    }
    for(int i = n - 1;i >= 1; --i){
        for( int j = 1 ; j <= i ; ++j){
            f[i][j] += max(f[i+1][j],f[i+1][j+1]);
        }
    }
    cout << f[1][1];
    return 0;
}



















