一、最大池化原理

二、最大池化实例
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("../chihua",train=False,
                               download=True,transform=torchvision.transforms.ToTensor()) # 对数据集的操作
dataloader = DataLoader(dataset,batch_size=64) # 加载数据集 
构建最大池化神经网络:
class SUN(nn.Module):
    def __init__(self):
        super(SUN, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False)
    def forward(self, input):
        output = self.maxpool1(input)
        return output
sun = SUN() 
使用tensorboard显示图片:
writer = SummaryWriter("../logs_maxpool")
step = 0
for data in dataloader:
    imgs,targets = data
    writer.add_image("input", imgs,  step, dataformats="NCHW") # 注意输入的图片,可能出现数据类型的不匹配
    output = sun(imgs)
    writer.add_image("output", output, step, dataformats="NCHW") # 数据通道的设置
    step +=1
writer.close() 
显示的结果:


池化的作用,减小了像素,但是对应的,变得更加模糊。
三、非线性激活
非线性激活的作用,就是主要是给模型加上一些非线性特征,非线性特征越多,才能训练出符合各种特征的模型,提高模型的泛化能力。
四、非线性激活的实例
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1,-0.5],
                      [-1,3]])
input = torch.reshape(input,(-1, 1, 2, 2))
print(input.shape)
dataset = torchvision.datasets.CIFAR10("../datas", train = False, download=True,
                                       transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
class SUN(nn.Module):
    def __init__(self):
        super(SUN, self).__init__()
        self.relu1 = ReLU() # 添加对应的网络
        self.sigmoid = Sigmoid()
    def forward (self, input):
        output = self.sigmoid(input) # 使用了Sigmoid函数
        return output
sun = SUN()
step = 0
write = SummaryWriter("../logs_relu")
for data in dataloader:
    imgs,targets = data
    write.add_image("input", imgs, global_step=step)
    output = sun(imgs)
    write.add_image("output",output,global_step=step)
    step +=1
write.close() 
结果


五、 线性层
主要作用是通过线性变换将输入数据映射到一个新的空间,改变数据的维度,便于后续层进一步处理。
六、线性层实例
import torch import torchvision from torch import nn from torch.nn import Linear from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset = torchvision.datasets.CIFAR10("../datalinear", train=False, transform=torchvision.transforms.ToTensor(), download=True) dataloader = DataLoader(dataset, batch_size=64, drop_last=True)# 此处特别注意,要设置该参数,否则出现报错:
RuntimeError: mat1 and mat2 shapes cannot be multiplied (1x49152 and 196608x10) 
class SUN(nn.Module):
    def __init__(self):
        super(SUN, self).__init__()
        self.linear1 = Linear(196608, 10)
    def forward(self,input):
        output = self.linear1(input)
        return output
sun = SUN()
# writer = SummaryWriter("../logslinear")
# step = 0
for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    # output = torch.reshape(imgs, (1, 1, 1, -1))
    # 展平
    output = torch.flatten(imgs)
    print(output.reshape)
    output = sun(output)
    print(output.shape)
结果:
 

将196608的in_future输出out_future变为10。


















