目录
1.数据集格式如下
2.训练的代码如下
3.训练的网络如下
4.训练的结果如下

简单留个备注,方便自己以后查找
1.数据集格式如下

txt里面的格式 类别 中心点x,y 宽高 姿态1的x,姿态1的y,姿态可见度。。。。
<class-index> <x> <y> <width> <height> <px1> <py1> <p1-visibility> <px2> <py2> <p2-visibility> <pxn> <pyn> <p2-visibility>
训练的yaml文件
coco8-pose.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco8-pose  ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
# Classes
names:
  0: person
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
2.训练的代码如下
from ultralytics import YOLO
# # Load a model
# model = YOLO("yolov8n-pose.yaml")  # build a new model from YAML
# model = YOLO("yolov8n-pose.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8-pose.yaml").load("yolov8n-pose.pt")  # build from YAML and transfer weights
# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)3.训练的网络如下
yolov8-pose.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
# Parameters
nc: 1 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 768]
  l: [1.00, 1.00, 512]
  x: [1.00, 1.25, 512]
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
  - [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
4.训练的结果如下
 
 
 
附上
预测的代码
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
# model = YOLO("path/to/best.pt")  # load a custom model
# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image验证的代码
 
 from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model
# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category 
 
                


![Python入门级[ 基础语法 函数... ] 笔记 例题较多](https://i-blog.csdnimg.cn/direct/b86fedcf0cab4a289afacace4215ec56.png)







![[linux#39][线程] 详解线程的概念](https://img-blog.csdnimg.cn/img_convert/9238c18caa9e4022af53c54ce221e63c.png)







