SPSS
![![[Pasted image 20240818185041.png]]](https://i-blog.csdnimg.cn/direct/8d27b3926a264d6d8bae9c16fa56a359.png)
导入数据
![![[Pasted image 20240819052400.png]]](https://i-blog.csdnimg.cn/direct/4a8182b7c09f4f4fb82f22351c9a7f5e.png)
![![[Pasted image 20240819052522.png]]](https://i-blog.csdnimg.cn/direct/02aeecbfe40a46f28b34cfba2f0cf01b.png)
主成分分析
![![[Pasted image 20240819052621.png]]](https://i-blog.csdnimg.cn/direct/cda564069ae9441ca5b2c2a105faf1d0.png)
参数设置
选择要压缩的变量
![![[Pasted image 20240819052723.png]]](https://i-blog.csdnimg.cn/direct/79b8219471b740c3bcd8cb7f5def3053.png)
![![[Pasted image 20240819052855.png]]](https://i-blog.csdnimg.cn/direct/cb4e6f990ee34906bb210494c7741548.png)
![![[Pasted image 20240819053050.png]]](https://i-blog.csdnimg.cn/direct/7fd142bd65be46bc8f60293d45286bc0.png)
![![[Pasted image 20240819053101.png]]](https://i-blog.csdnimg.cn/direct/9e712f17c97949259104e41e368d95b8.png)
![![[Pasted image 20240819053126.png]]](https://i-blog.csdnimg.cn/direct/29fc5fcd4a154fcc877c0f522d192152.png)
![![[Pasted image 20240819053200.png]]](https://i-blog.csdnimg.cn/direct/a88190943445484f99a299f2eeaa24fb.png)
输出结果
![![[Pasted image 20240819053221.png]]](https://i-blog.csdnimg.cn/direct/61a7d1b190584ff7b1d271c779bf66b0.png)
![![[Pasted image 20240819053545.png]]](https://i-blog.csdnimg.cn/direct/fb2a89c2be04420e98dfa5c7282cb3b6.png)
![![[Pasted image 20240819053659.png]]](https://i-blog.csdnimg.cn/direct/7dd21d716da54220a79ee5056ca288b7.png)
越陡说明信息差越大,反之信息差越小
![![[Pasted image 20240819053811.png]]](https://i-blog.csdnimg.cn/direct/f61da1379a4347bb8256766c3d8e749e.png)
![![[Pasted image 20240819054027.png]]](https://i-blog.csdnimg.cn/direct/503e8345cad24bad81451ce3bf353c76.png)
![![[Pasted image 20240819053403.png]]](https://i-blog.csdnimg.cn/direct/2baf8fb099804cb1bd94316fc96b2d6b.png)
![![[Pasted image 20240819053436.png]]](https://i-blog.csdnimg.cn/direct/a2f4866ccf9f40bdb21d4b996f9ac589.png)
导出数据
双击可以复制
![![[Pasted image 20240819055032.png]]](https://i-blog.csdnimg.cn/direct/42774534014e4a329d0c3b593cc0485e.png)
粘贴到matlab
![![[Pasted image 20240819055059.png]]](https://i-blog.csdnimg.cn/direct/c566c0e8044a47858941de015d269665.png)
计算
Matlab
clc,clear
data = readmatrix('例2.xlsx'); %将数据保存在txt文件中
data = zscore(data); %数据的标准化
r = corrcoef(data); %计算相关系数矩阵r
%下面利用相关系数矩阵进行主成分分析,vecl的第一列为r的第一特征向量,即主成分的系数
[vec1,lamda,rate] = pcacov(r); %lamda为r的特征值,rate为各个主成分的贡献率
ljrate = cumsum(rate); %累计贡献率
f = repmat(sign(sum(vec1)), size(vec1, 1), 1); %构造与vecl同维数的元素为正负1的矩阵
vec2 = vec1.*f; %修改特征向量的正负号,使得每个特征向量的分量和为正,即为最终的特征向量
num = find(lamda>1, 1, 'last'); %num为选取的主成分的个数,这里选取特征值大于1的
df = data*vec2(:,1:num); %计算各个主成分的得分
tf = df*rate(1:num)/100; %计算综合得分
[stf, ind] = sort(tf,'descend'); %把得分按照从高到低的次序排列
disp('特征值及其贡献率,累加贡献率:')
[lamda, ratem ljrate]
disp('主成分得分及排序')
[stf, ind]
%假定主成分的信息保留率
T = 0.9;
for k = 1:b
if DS(k, 3) >= T
com_num = k;
break;
end
end
![![[Pasted image 20240819063125.png]]](https://i-blog.csdnimg.cn/direct/913082dbcfbf4719971c9cde53cfb6cd.png)



















