参数量计算:
(输入通道*w)*(输出通道*w)*k^2+(输出通道*w)*2
w是模型缩放里面的width

- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
输出通道c2=64,k=3,s=2
P1/2 特征图变小一半

先定义算子层
再搭一个forward前向传播
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including ac





![无缝融入,即刻智能[二]:Dify-LLM平台(聊天智能助手、AI工作流)快速使用指南,42K+星标见证专属智能方案](https://img-blog.csdnimg.cn/img_convert/4eb1e52f7a4082f5478b8894cff657ab.png)













