letcode 分类练习 树的遍历
- 树的构建
- 递归遍历
- 前序遍历
- 中序遍历
- 后序遍历
 
- 迭代遍历
- 前序遍历
- 中序遍历
- 后序遍历
 
- 层序遍历
- 层序遍历可以解决的问题
- 107. 二叉树的层序遍历 II
- 199. 二叉树的右视图
- 637. 二叉树的层平均值
- 429. N 叉树的层序遍历
- 515.在每个树行中找最大值
- 116.填充每个节点的下一个右侧节点指针
- 117.填充每个节点的下一个右侧节点指针II
- 104.二叉树的最大深度
- 111.二叉树的最小深度
 
 
树的构建
输入数组:[8, 3, 10, 1, 6, null, 14, null, null, 4, 7, 13]
 
#include <iostream>
#include <vector>
#include <queue>
#include <memory>
using namespace std;
// 定义二叉树节点结构
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
// 根据向量数组构建二叉树
TreeNode* constructBinaryTree(const vector<int*>& nums) {
    if (nums.empty() || !nums[0]) {
        return nullptr;
    }
    // 使用队列进行层序遍历构建树
    queue<TreeNode*> q;
    TreeNode* root = new TreeNode(*nums[0]);
    q.push(root);
    int i = 1;
    while (!q.empty() && i < nums.size()) {
        TreeNode* current = q.front();
        q.pop();
        // 构建左子节点
        if (i < nums.size() && nums[i]) {
            current->left = new TreeNode(*nums[i]);
            q.push(current->left);
        }
        i++;
        // 构建右子节点
        if (i < nums.size() && nums[i]) {
            current->right = new TreeNode(*nums[i]);
            q.push(current->right);
        }
        i++;
    }
    return root;
}
递归遍历
前序遍历
class Solution {
public:
    vector<int> result;
    void dfs(TreeNode* root){
        if(!root) return;
        result.push_back(root->val);
        if(root -> left)dfs(root -> left);
        if(root -> right)dfs(root-> right);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        dfs(root);
        return result;
    }
};
中序遍历
class Solution {
public:
    vector<int> result;
    void dfs(TreeNode* root){
        if(!root) return;
        if(root->left)dfs(root->left);
        result.push_back(root -> val);
        if(root->right)dfs(root->right);
    }
    vector<int> inorderTraversal(TreeNode* root) {
        dfs(root);
        return result;
    }
};
后序遍历
class Solution {
public:
    vector<int> result;
    void dfs(TreeNode* root){
        if(!root) return;
        if(root->left)dfs(root->left);
        if(root->right)dfs(root->right);
        result.push_back(root -> val);
    }
    vector<int> postorderTraversal(TreeNode* root) {
        dfs(root);
        return result;
    }
};
迭代遍历
前序遍历

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        stack<TreeNode*> s;
        vector<int> result;
        if(!root)return result;
        while(root || !s.empty()){
            while(root){
                s.push(root);
                // 这里while一直向左就开始收集
                result.push_back(root->val);
                root = root -> left;
            }
            TreeNode* node = s.top();
            s.pop();
            root = node -> right;
        }
        return result;
    }
};
中序遍历

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        stack<TreeNode*> s;
        vector<int> result;
        if(!root)return result;
        while(root || !s.empty()){
            while(root){
                s.push(root);
                root = root -> left;
            }
            TreeNode* node = s.top();
            s.pop();
            // 弹栈的时候才收集
            result.push_back(node->val);
            root = node -> right;
        }
        return result;
    }
};
后序遍历

 后序遍历的迭代方式有区别,就是弹栈后,不是收集,而是判断它的右孩子节点,如果右孩子为空,说明它是叶子节点,这个时候我们收集到result里,并且把这个标记成前驱节点,root再置为空。如果右孩子不为空,我们要像访问左孩子这样继续遍历。
class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        stack<TreeNode*> s;
        vector<int> result;
        if(!root) return result;
        TreeNode* prev;
        while(root || !s.empty()){
            while(root){
                s.push(root);
                root = root -> left;
            }
            TreeNode* root = s.top();
            s.pop();
            if(root -> right == nullptr && root != prev){
                result.push_back(root -> val);
                prev = root;
                root = root -> right;
            }else{
                s.push(root);
                root = root -> right;
            }
        }
        return result;
    }
};
层序遍历

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*>q;
        vector<vector<int>> result;
        if(!root)return result;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            vector<int> tmp;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                q.pop();
                tmp.push_back(node -> val);
                if(node->left)q.push(node->left);
                if(node->right)q.push(node->right);
            }
            result.push_back(tmp);
        }
        return result;
    }
};
层序遍历可以解决的问题
107. 二叉树的层序遍历 II

class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*>q;
        vector<vector<int>> result;
        if(!root)return result;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            vector<int> tmp;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                q.pop();
                tmp.push_back(node -> val);
                if(node->left)q.push(node->left);
                if(node->right)q.push(node->right);
            }
            result.push_back(tmp);
        }
        reverse(result.begin(), result.end());
        return result;
    }
};
199. 二叉树的右视图

class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        queue<TreeNode*>q;
        vector<int> result;
        if(!root)return result;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            vector<int> tmp;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                q.pop();
                if(i==k-1) result.push_back(node -> val);
                if(node->left)q.push(node->left);
                if(node->right)q.push(node->right);
            }
        }
        return result;
    }
};
637. 二叉树的层平均值

class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        queue<TreeNode*>q;
        vector<double> result;
        if(!root)return result;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            vector<int> tmp;
            double sum = 0;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                sum += node->val;
                q.pop();
                if(i==k-1) result.push_back(sum/k);
                if(node->left)q.push(node->left);
                if(node->right)q.push(node->right);
            }
        }
        return result;
    }
};
429. N 叉树的层序遍历

class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        queue<Node*> q;
        vector<vector<int>>result;
        if(!root)return result;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            vector<int>tmp;
            for(int i =0;i<k;i++){
                Node* node = q.front();
                q.pop();
                tmp.push_back(node->val);
                for(auto c : node->children){
                    q.push(c);
                }
            }
            result.push_back(tmp);
        }
        return result;
    }
};
515.在每个树行中找最大值

class Solution {
public:
    vector<int> largestValues(TreeNode* root) {
        queue<TreeNode*> q;
        vector<int> result;
        if(!root) return result;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            int maxV = INT_MIN;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                q.pop();
                if(node -> val > maxV)maxV = node -> val;
                if(i == k-1)result.push_back(maxV);
                if(node -> left)q.push(node -> left);
                if(node -> right)q.push(node -> right);
            }
        }
        return result;
    }
};
116.填充每个节点的下一个右侧节点指针

class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> q;
        if(!root) return root;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            Node* tmp = NULL;
            for(int i =0;i<k;i++){
                Node* node = q.front();
                q.pop();
                if(tmp != NULL)tmp -> next = node;
                tmp = node;
                if(node -> left)q.push(node -> left);
                if(node -> right)q.push(node -> right);
            }
        }
        return root;
    }
};
117.填充每个节点的下一个右侧节点指针II

class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> q;
        if(!root) return root;
        q.push(root);
        while(!q.empty()){
            int k = q.size();
            Node* tmp = NULL;
            for(int i =0;i<k;i++){
                Node* node = q.front();
                q.pop();
                if(tmp != NULL)tmp -> next = node;
                tmp = node;
                if(node -> left)q.push(node -> left);
                if(node -> right)q.push(node -> right);
            }
        }
        return root;
    }
};
104.二叉树的最大深度

class Solution {
public:
    int maxDepth(TreeNode* root) {
        queue<TreeNode*> q;
        if(!root) return 0;
        q.push(root);
        int count = 0;
        while(!q.empty()){
            int k = q.size();
            count++;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                q.pop();
                if(node -> left)q.push(node -> left);
                if(node -> right)q.push(node -> right);
            }
        }
        return count;
    }
};
111.二叉树的最小深度
 如果是叶子节点提前返回
如果是叶子节点提前返回
class Solution {
public:
    int minDepth(TreeNode* root) {
        queue<TreeNode*> q;
        if(!root) return 0;
        q.push(root);
        int count = 0;
        while(!q.empty()){
            int k = q.size();
            count++;
            for(int i =0;i<k;i++){
                TreeNode* node = q.front();
                q.pop();
                if(!node -> left && !node -> right)return count;
                if(node -> left)q.push(node -> left);
                if(node -> right)q.push(node -> right);
            }
        }
        return count;
    }
};



















