-  创建虚拟环境用于运行-  运行 InternLM 的基础环境,命名为 llamaindex conda create -n llamaindex python=3.10 
- 查看存在的环境  conda env list 
- 激活刚刚创建的环境  conda activate llamaindex 
- 安装基本库pytorch,torchvision ,torchaudio,pytorch-cuda 并指定通道(建议写上对应的版本号) 
    -  conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia 
 
-  
 
-  
-  安装 Llamaindex- 此操作在对应的虚拟环境中安装 Llamaindex和相关的包 pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0 
 
- 此操作在对应的虚拟环境中安装 Llamaindex和相关的包 
-  下载 Sentence Transformer 模型- 为了方面管理建立对应的路径,在根目录下创建2个文件( mkdir llamaindex_demo mkdir model )
- 然后在llamaindex_demo目录下创建下载脚本( touch llamaindex_demo/download_hf.py )
- 在download_hf.py文件中写入 
    -  import os # 设置环境变量 
 os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型下载源词向量模型Sentence Transformer 
 os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
 
-  
- 执行下载模型脚本 python download_hf.py 
- 如果上面的步骤不存在nltk此处需要手动下载nltk模型(cd /root
 git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
 cd nltk_data
 mv packages/* ./
 cd tokenizers
 unzip punkt.zip
 cd ../taggers
 unzip averaged_perceptron_tagger.zip)
 
- 为了方面管理建立对应的路径,在根目录下创建2个文件( 
-  LlamaIndex HuggingFaceLLM- 下载模型internlm2-chat-1_8b (pip install internlm2-chat-1_8b )
- 如果有对应的模型可以软链接出来ln -s 模型路径 要复制到哪里的路径如( cd ~/model ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./ )
- 创建运行模型脚本 touch  touch ~/llamaindex_demo/llamaindex_internlm.py 
- 编辑llamaindex_internlm.py文件( from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core.llms import ChatMessage llm = HuggingFaceLLM( model_name="/root/model/internlm2-chat-1_8b", tokenizer_name="/root/model/internlm2-chat-1_8b", model_kwargs={"trust_remote_code":True}, tokenizer_kwargs={"trust_remote_code":True} ) rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")]) print(rsp))
- 运行模型  python llamaindex_internlm.py 
 
-  LlamaIndex RAG-  安装 LlamaIndex词嵌入向量依赖(pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor ) 
-  如果上面步骤报错请根据提示安装对应的插件版本(如 pip install huggingface-hub==0.23.5) 
-  获取知识库(创建data 把xtuner包中文件移动到对应的目录cd ~/llamaindex_demo 
 mkdir data
 cd data
 git clone https://github.com/InternLM/xtuner.git
 mv xtuner/README_zh-CN.md ./)
-  创建运行模型代码 llamaindex_RAG.py 
-  llamaindex_RAG.py文件内容(from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.huggingface import HuggingFaceLLM embed_model = HuggingFaceEmbedding( model_name="/root/model/sentence-transformer" ) Settings.embed_model = embed_model llm = HuggingFaceLLM( model_name="/root/model/internlm2-chat-1_8b", tokenizer_name="/root/model/internlm2-chat-1_8b", model_kwargs={"trust_remote_code":True}, tokenizer_kwargs={"trust_remote_code":True} ) Settings.llm = llm documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("xtuner是什么?") print(response))
- 运行 python llamaindex_RAG.py 
 
-  
-  浏览器上运行对话- 安装服务依赖 pip install streamlit==1.36.0 
- 创建运行脚本app.py import streamlit as st 
 from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
 from llama_index.embeddings.huggingface import HuggingFaceEmbedding
 from llama_index.llms.huggingface import HuggingFaceLLMst.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗") 
 st.title("llama_index_demo")# 初始化模型 
 @st.cache_resource
 def init_models():
 embed_model = HuggingFaceEmbedding(
 model_name="/root/model/sentence-transformer"
 )
 Settings.embed_model = embed_modelllm = HuggingFaceLLM( 
 model_name="/root/model/internlm2-chat-1_8b",
 tokenizer_name="/root/model/internlm2-chat-1_8b",
 model_kwargs={"trust_remote_code": True},
 tokenizer_kwargs={"trust_remote_code": True}
 )
 Settings.llm = llmdocuments = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data() 
 index = VectorStoreIndex.from_documents(documents)
 query_engine = index.as_query_engine()return query_engine # 检查是否需要初始化模型 
 if 'query_engine' not in st.session_state:
 st.session_state['query_engine'] = init_models()def greet2(question): 
 response = st.session_state['query_engine'].query(question)
 return response
 # Store LLM generated responses
 if "messages" not in st.session_state.keys():
 st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]# Display or clear chat messages 
 for message in st.session_state.messages:
 with st.chat_message(message["role"]):
 st.write(message["content"])def clear_chat_history(): 
 st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # Function for generating LLaMA2 response 
 def generate_llama_index_response(prompt_input):
 return greet2(prompt_input)# User-provided prompt 
 if prompt := st.chat_input():
 st.session_state.messages.append({"role": "user", "content": prompt})
 with st.chat_message("user"):
 st.write(prompt)# Gegenerate_llama_index_response last message is not from assistant 
 if st.session_state.messages[-1]["role"] != "assistant":
 with st.chat_message("assistant"):
 with st.spinner("Thinking..."):
 response = generate_llama_index_response(prompt)
 placeholder = st.empty()
 placeholder.markdown(response)
 message = {"role": "assistant", "content": response}
 st.session_state.messages.append(message)
-  运行 streamlit run app.py 
- 默认端口8503( http://localhost:8503)
- 最终效果 
 
- 安装服务依赖 



















