目录
- GPT-4o详细中文注释的Colab
- 中英文字幕观看视频
- 1 浏览器下载插件
- 2 打开官方视频
- 课程1:Prompt Compression and Query Optimization
- 课程2:Carbon Aware Computing for GenAI developers
- 课程3:Function-calling and data extraction with LLMs
- 课程4:Building Your Own Database Agent
- 课程5:AI Agents in LangGraph
- 课程6:AI Agentic Design Patterns with AutoGen
- 课程7:Introduction to on-device AI
- 课程8:Multi AI Agent Systems with crewAI
- 课程9:Building Multimodal Search and RAG
- 课程10:Building Agentic RAG with Llamaindex
- 课程11:Quantization in Depth
- 课程12:Prompt Engineering for Vision Models
- 课程13:Getting Started with Mistral
- 课程14:Quantization Fundamentals with Hugging Face
- 课程15:Preprocessing Unstructured Data for LLM Applications
- 课程16:Red Teaming LLM Applications
- 课程17:JavaScript RAG Web Apps with LlamaIndex
- 课程18:Efficiently Serving LLMs
- 课程19:Knowledge Graphs for RAG
- 课程20:Open Source Models with Hugging Face
- 课程21:Prompt Engineering with Llama 2&3
- 课程22:Serverless LLM Apps Amazon Bedrock
- 课程23:Building Applications with Vector Databases
- 课程24:Automated Testing for LLMOps
- 课程25:LLMOps
- 课程26:Build LLM Apps with LangChain.js
- 课程27:Advanced Retrieval for AI with Chroma
- 课程28:Reinforcement Learning From Human Feedback
- 课程29:Building and Evaluating Advanced RAG
- 课程30:Quality and Safety for LLM Applications
- 课程31:Vector Databases: from Embeddings to Applications
- 课程32:Functions, Tools and Agents with LangChain
- 课程33:Pair Programming with a Large Language Model
- 课程34:Understanding and Applying Text Embeddings
- 课程35:How Business Thinkers Can Start Building AI Plugins With Semantic Kernel
- 课程36:Finetuning Large Language Models
- 课程37:Large Language Models with Semantic Search
- 课程38:Evaluating and Debugging Generative AI
- 课程39:Building Generative AI Applications with Gradio
- 课程40:LangChain Chat with Your Data
- 课程41:Building Systems with the ****** API
- 课程42:How Diffusion Models Work
GPT-4o详细中文注释的Colab
中文注释链接:https://github.com/Czi24/Awesome-MLLM-LLM-Colab/tree/master/Courses/Prompt-Compression-and-Query-Optimization
中英文字幕观看视频
1 浏览器下载插件
沉浸式翻译
设置你需要用的翻译软件
2 打开官方视频
视频官方地址:https://learn.deeplearning.ai/courses/prompt-compression-and-query-optimization/lesson/1/introduction
打开自动开启双语字幕
仓库:https://github.com/Czi24/Awesome-MLLM-LLM-Colab
课程1:Prompt Compression and Query Optimization
-
课程链接
-
Colab代码链接
-
中文详细代码注释链接:https://github.com/Czi24/Awesome-MLLM-LLM-Colab/tree/master/Courses/1_Prompt-Compression-and-Query-Optimization
| Prompt Compression and Query Optimization | 提示压缩与查询优化 |
|---|---|
| Introduction | 介绍 |
| Vanilla Vector Search | 基础向量搜索 |
| Filtering With Metadata | 元数据过滤 |
| Projections | 投影 |
| Boosting | 提升 |
| Prompt Compression | 提示压缩 |
| Conclusion | 结论 |
| Appendix-Tips and Help | 附录-提示和帮助 |
课程2:Carbon Aware Computing for GenAI developers
-
课程链接
-
Colab代码链接
| Carbon Aware Computing for GenAI developers | 面向生成式AI开发人员的碳感知计算 |
|---|---|
| Introduction | 介绍 |
| The Carbon Footprint of Machine Learning | 机器学习的碳足迹 |
| Exploring Carbon Intensity on the Grid | 探索电网中的碳强度 |
| Training Models in Low Carbon Regions | 在低碳地区训练模型 |
| Using Real-Time Energy Data for Low-Carbon Training | 使用实时能源数据进行低碳训练 |
| Understanding your Google Cloud Footprint | 了解你的谷歌云碳足迹 |
| Next steps | 下一步 |
| Conclusion | 结论 |
| Google Cloud Setup | 谷歌云设置 |
课程3:Function-calling and data extraction with LLMs
-
课程链接
-
Colab代码链接
| Function-calling and data extraction with LLMs | 使用LLMs进行函数调用和数据提取 |
|---|---|
| Introduction | 介绍 |
| What is function calling | 什么是函数调用 |
| Function calling variations | 函数调用的变体 |
| Interfacing with external tools | 与外部工具的接口 |
| Structured Extraction | 结构化提取 |
| Applications | 应用 |
| Course project dialog processing | 课程项目对话处理 |
| Conclusion | 结论 |
课程4:Building Your Own Database Agent
-
课程链接
-
Colab代码链接
| Building Your Own Database Agent | 构建你自己的数据库代理 |
|---|---|
| Introduction | 介绍 |
| Your First AI Agent | 你的第一个AI代理 |
| Interacting with a CSV Data | 处理CSV数据 |
| Connecting to a SQL Database | 连接SQL数据库 |
| Azure OpenAI Function Calling Feature | Azure OpenAI函数调用功能 |
| Leveraging Assistants API for SQL Databases | 利用助手API处理SQL数据库 |
| Conclusion | 结论 |
课程5:AI Agents in LangGraph
-
课程链接
-
Colab代码链接
| AI Agents in LangGraph | LangGraph中的AI代理 |
|---|---|
| Introduction | 介绍 |
| Build an Agent from Scratch | 从头构建代理 |
| LangGraph Components | LangGraph组件 |
| Agentic Search Tools | 代理搜索工具 |
| Persistence and Streaming | 持久性与流媒体 |
| Human in the loop | 人在回路中 |
| Essay Writer | 文章写作 |
| LangChain Resources | LangChain资源 |
| Conclusion | 结论 |
课程6:AI Agentic Design Patterns with AutoGen
-
课程链接
-
Colab代码链接
| AI Agentic Design Patterns with AutoGen | 使用AutoGen的AI代理设计模式 |
|---|---|
| Introduction | 介绍 |
| Multi-Agent Conversation and Stand-up Comedy | 多代理对话与单口喜剧 |
| Sequential Chats and Customer Onboarding | 连续聊天与客户入职 |
| Reflection and Blogpost Writing | 反思与博客写作 |
| Tool Use and Conversational Chess | 工具使用与对话象棋 |
| Coding and Financial Analysis | 编码与财务分析 |
| Planning and Stock Report Generation | 规划与股票报告生成 |
| Conclusion | 结论 |
课程7:Introduction to on-device AI
-
课程链接
-
Colab代码链接
| Introduction to on-device AI | 设备端AI简介 |
|---|---|
| Introduction | 介绍 |
| Why on-device | 为什么选择设备端AI |
| Deploying Segmentation Models On-Device | 部署设备端分割模型 |
| Preparing for on-device deployment | 准备设备端部署 |
| Quantizing Models | 量化模型 |
| Device Integration | 设备集成 |
| Conclusion | 结论 |
| Appendix - Building the App | 附录 - 构建应用 |
| Appendix - Tips and Help | 附录 - 提示和帮助 |
课程8:Multi AI Agent Systems with crewAI
-
课程链接
-
Colab代码链接
| Multi AI Agent Systems with crewAI | 使用crewAI的多AI代理系统 |
|---|---|
| Introduction | 介绍 |
| Overview | 概览 |
| AI Agents | AI代理 |
| Create agents to research and write an article (code) | 创建代理进行研究和写文章(代码) |
| Key elements of AI agents | AI代理的关键要素 |
| Multi agent customer support automation (code) | 多代理客户支持自动化(代码) |
| Mental framework for agent creation | 代理创建的思维框架 |
| Key elements of agent tools | 代理工具的关键要素 |
| Tools for a customer outreach campaign (code) | 客户外展活动的工具(代码) |
| Recap of tools | 工具回顾 |
| Key elements of well defined tasks | 定义明确任务的关键要素 |
| Automate event planning (code) | 自动化事件规划(代码) |
| Recap on tasks | 任务回顾 |
| Multi agent collaboration | 多代理协作 |
| Multi agent collaboration for financial analysis (code) | 多代理财务分析协作(代码) |
| Build a crew to tailor job applications (code) | 创建团队定制工作申请(代码) |
| Next steps with AI agent systems | AI代理系统的下一步 |
| Conclusion | 结论 |
| How to get your completion badge | 如何获得完成徽章 |
课程9:Building Multimodal Search and RAG
-
课程链接
-
Colab代码链接
| Building Multimodal Search and RAG | 构建多模态搜索和RAG |
|---|---|
| Introduction | 介绍 |
| Overview of Multimodality | 多模态概述 |
| Multimodal Search | 多模态搜索 |
| Large Multimodal Models (LMMs) | 大型多模态模型(LMMs) |
| Multimodal RAG (MM-RAG) | 多模态RAG(MM-RAG) |
| Industry Applications | 行业应用 |
| Multimodal Recommender System | 多模态推荐系统 |
| Conclusion | 结论 |
| Appendix - Tips and Help | 附录 - 提示和帮助 |
课程10:Building Agentic RAG with Llamaindex
-
课程链接
-
Colab代码链接
| Building Agentic RAG with Llamaindex | 使用Llamaindex构建Agentic RAG |
|---|---|
| Introduction | 介绍 |
| Router Query Engine | 路由查询引擎 |
| Tool Calling | 工具调用 |
| Building an Agent Reasoning Loop | 构建代理推理循环 |
| Building a Multi-Document Agent | 构建多文档代理 |
| Conclusion | 结论 |
课程11:Quantization in Depth
-
课程链接
-
Colab代码链接
| Quantization in Depth | 深入量化 |
|---|---|
| Introduction | 介绍 |
| Overview | 概览 |
| Quantize and De-quantize a Tensor | 量化和反量化张量 |
| Get the Scale and Zero Point | 获取比例和零点 |
| Symmetric vs Asymmetric Mode | 对称模式与非对称模式 |
| Finer Granularity for more Precision | 更精细的粒度以提高精度 |
| Per Channel Quantization | 每通道量化 |
| Per Group Quantization | 每组量化 |
| Quantizing Weights & Activations for Inference | 推理的权重和激活量化 |
| Custom Build an 8-Bit Quantizer | 自定义构建8位量化器 |
| Replace PyTorch layers with Quantized Layers | 用量化层替换PyTorch层 |
| Quantize any Open Source PyTorch Model | 量化任何开源PyTorch模型 |
| Load your Quantized Weights from HuggingFace Hub | 从HuggingFace Hub加载量化权重 |
| Weights Packing | 权重打包 |
| Packing 2-bit Weights | 打包2位权重 |
| Unpacking 2-Bit Weights | 解包2位权重 |
| Beyond Linear Quantization | 超越线性量化 |
| Conclusion | 结论 |
课程12:Prompt Engineering for Vision Models
-
课程链接
-
Colab代码链接
| Prompt Engineering for Vision Models | 视觉模型的提示工程 |
|---|---|
| Introduction | 介绍 |
| Overview | 概览 |
| Image Segmentation | 图像分割 |
| Object Detection | 目标检测 |
| Image Generation | 图像生成 |
| Fine-tuning | 微调 |
| Conclusion | 结论 |
| Appendix | 附录 |
课程13:Getting Started with Mistral
-
课程链接
-
Colab代码链接
| Getting Started with Mistral | 入门Mistral |
|---|---|
| Introduction | 介绍 |
| Overview | 概览 |
| Prompting | 提示 |
| Model Selection | 模型选择 |
| Function Calling | 函数调用 |
| RAG from Scratch | 从零开始构建RAG |
| Chatbot | 聊天机器人 |
| Conclusion | 结论 |
课程14:Quantization Fundamentals with Hugging Face
-
课程链接
-
Colab代码链接
| Quantization Fundamentals with Hugging Face | Hugging Face的量化基础 |
|---|---|
| Introduction | 介绍 |
| Handling Big Models | 处理大模型 |
| Data Types and Sizes | 数据类型和大小 |
| Loading Models by data type | 按数据类型加载模型 |
| Quantization Theory | 量化理论 |
| Quantization of LLMs | LLMs的量化 |
| Conclusion | 结论 |
课程15:Preprocessing Unstructured Data for LLM Applications
-
课程链接
-
Colab代码链接
| Preprocessing Unstructured Data for LLM Applications | 预处理LLM应用程序的非结构化数据 |
|---|---|
| Introduction | 介绍 |
| Overview of LLM Data Preprocessing | LLM数据预处理概述 |
| Normalizing the Content | 内容规范化 |
| Metadata Extraction and Chunking | 元数据提取和分块 |
| Preprocessing PDFs and Images | 预处理PDF和图像 |
| Extracting Tables | 提取表格 |
| Build Your Own RAG Bot | 构建你自己的RAG机器人 |
| Conclusion | 结论 |
| Appendix - Tips and Help | 附录 - 提示和帮助 |
课程16:Red Teaming LLM Applications
-
课程链接
-
Colab代码链接
| Red Teaming LLM Applications | LLM应用程序的红队测试 |
|---|---|
| Introduction | 介绍 |
| Overview of LLM Vulnerabilities | LLM漏洞概述 |
| Red Teaming LLMs | 红队测试LLMs |
| Red Teaming at Scale | 大规模红队测试 |
| Red Teaming LLMs with LLMs | 用LLMs进行红队测试 |
| A Full Red Teaming Assessment | 全面的红队评估 |
| Conclusion | 结论 |
课程17:JavaScript RAG Web Apps with LlamaIndex
-
课程链接
-
Colab代码链接
| JavaScript RAG Web Apps with LlamaIndex | 使用LlamaIndex的JavaScript RAG Web应用 |
|---|---|
| Introduction | 介绍 |
| Getting started with RAG | 入门RAG |
| Build a full-stack web app | 构建全栈Web应用 |
| Advanced queries with Agents | 使用代理的高级查询 |
| Production-ready techniques | 生产就绪技术 |
| Conclusion | 结论 |
课程18:Efficiently Serving LLMs
-
课程链接
-
Colab代码链接
| Efficiently Serving LLMs | 高效服务LLMs |
|---|---|
| Introduction | 介绍 |
| Text Generation | 文本生成 |
| Batching | 批处理 |
| Continuous Batching | 连续批处理 |
| Quantization | 量化 |
| Low-Rank Adaptation | 低秩适应 |
| Multi-LoRA inference | 多LoRA推理 |
| LoRAX | LoRAX |
| Conclusion | 结论 |
课程19:Knowledge Graphs for RAG
-
课程链接
-
Colab代码链接
| Knowledge Graphs for RAG | RAG的知识图谱 |
|---|---|
| Introduction | 介绍 |
| Knowledge Graph Fundamentals | 知识图谱基础 |
| Querying Knowledge Graphs | 查询知识图谱 |
| Preparing Text for RAG | 为RAG准备文本 |
| Constructing a Knowledge Graph from Text Documents | 从文本文件构建知识图谱 |
| Adding Relationships to the SEC Knowledge Graph | 向SEC知识图谱添加关系 |
| Expanding the SEC Knowledge Graph | 扩展SEC知识图谱 |
| Chatting with the Knowledge Graph | 与知识图谱聊天 |
| Conclusion | 结论 |
课程20:Open Source Models with Hugging Face
-
课程链接
-
Colab代码链接
| Open Source Models with Hugging Face | 使用Hugging Face的开源模型 |
|---|---|
| Introduction | 介绍 |
| Selecting models | 选择模型 |
| Natural Language Processing (NLP) | 自然语言处理(NLP) |
| Translation and Summarization | 翻译和摘要 |
| Sentence Embeddings | 句子嵌入 |
| Zero-Shot Audio Classification | 零样本音频分类 |
| Automatic Speech Recognition | 自动语音识别 |
| Text to Speech | 文本转语音 |
| Object Detection | 目标检测 |
| Image Segmentation | 图像分割 |
| Image Retrieval | 图像检索 |
| Image Captioning | 图像标题生成 |
| Multimodal Visual Question Answering | 多模态视觉问答 |
| Zero-Shot Image Classification | 零样本图像分类 |
| Deployment | 部署 |
| Conclusion | 结论 |
课程21:Prompt Engineering with Llama 2&3
-
课程链接
-
Colab代码链接
| Prompt Engineering with Llama 2&3 | 使用Llama 2&3进行提示工程 |
|---|---|
| Introduction | 介绍 |
| Overview of Llama Models | Llama模型概述 |
| Getting Started with Llama 2 & 3 | Llama 2&3入门 |
| Multi-turn Conversations | 多轮对话 |
| Prompt Engineering Techniques | 提示工程技术 |
| Comparing Different Llama 2 & 3 models | 比较不同的Llama 2&3模型 |
| Code Llama | 代码Llama |
| Llama Guard | Llama卫士 |
| Walkthrough of Llama Helper Function (Optional) | Llama助手函数演练(可选) |
| Conclusion | 结论 |
课程22:Serverless LLM Apps Amazon Bedrock
-
课程链接
-
Colab代码链接
| Serverless LLM Apps Amazon Bedrock | 使用Amazon Bedrock的无服务器LLM应用 |
|---|---|
| Introduction | 介绍 |
| Your first generations with Amazon Bedrock | 使用Amazon Bedrock生成第一个结果 |
| Summarize an audio file | 总结音频文件 |
| Enable logging | 启用日志记录 |
| Deploy an AWS Lambda function | 部署AWS Lambda函数 |
| Event-driven generation | 事件驱动生成 |
| Conclusion | 结论 |
课程23:Building Applications with Vector Databases
-
课程链接
-
Colab代码链接
| Building Applications with Vector Databases | 使用向量数据库构建应用 |
|---|---|
| Introduction | 介绍 |
| Semantic Search | 语义搜索 |
| Retrieval Augmented Generation (RAG) | 检索增强生成(RAG) |
| Recommender Systems | 推荐系统 |
| Hybrid Search | 混合搜索 |
| Facial Similarity Search | 面部相似性搜索 |
| Anomaly Detection | 异常检测 |
| Conclusion | 结论 |
课程24:Automated Testing for LLMOps
-
课程链接
-
Colab代码链接
| Automated Testing for LLMOps | LLMOps的自动化测试 |
|---|---|
| Introduction | 介绍 |
| Introduction to Continuous Integration (CI) | 持续集成(CI)介绍 |
| Overview of Automated Evals | 自动评估概述 |
| Automating Model-Graded Evals | 自动化模型评分评估 |
| Comprehensive Testing Framework | 综合测试框架 |
| Conclusion | 结论 |
| Optional: Exploring the CircleCI config file | 可选:探索CircleCI配置文件 |
课程25:LLMOps
-
课程链接
-
Colab代码链接
| LLMOps | LLMOps |
|---|---|
| Introduction | 介绍 |
| The Fundamentals | 基础知识 |
| Data Preparation | 数据准备 |
| Automation and Orchestration with Pipelines | 流水线的自动化和编排 |
| Prediction, Prompts, Safety | 预测、提示、安全 |
| Conclusion | 结论 |
| Next Step | 下一步 |
课程26:Build LLM Apps with LangChain.js
-
课程链接
-
Colab代码链接
| Build LLM Apps with LangChain.js | 使用LangChain.js构建LLM应用程序 |
|---|---|
| Introduction | 介绍 |
| Building Blocks | 构建模块 |
| Loading and preparing data | 加载和准备数据 |
| Vectorstores and embeddings | 向量存储和嵌入 |
| Question answering | 问答 |
| Conversational question answering | 对话问答 |
| Shipping as a web API | 作为Web API发布 |
| Conclusion | 结论 |
| Next Step | 下一步 |
课程27:Advanced Retrieval for AI with Chroma
-
课程链接
-
Colab代码链接
| Advanced Retrieval for AI with Chroma | 使用Chroma进行高级检索 |
|---|---|
| Introduction | 介绍 |
| Overview of embeddings-based retrieval | 基于嵌入的检索概述 |
| Pitfalls of retrieval - when simple vector search fails | 检索的陷阱 - 当简单向量搜索失败时 |
| Query Expansion | 查询扩展 |
| Cross-encoder re-ranking | 交叉编码器重新排序 |
| Embedding adaptors | 嵌入适配器 |
| Other Techniques | 其他技术 |
课程28:Reinforcement Learning From Human Feedback
-
课程链接
-
Colab代码链接
| Reinforcement Learning From Human Feedback | 从人类反馈中进行强化学习 |
|---|---|
| Introduction | 介绍 |
| How does RLHF work | RLHF如何工作 |
| Datasets for RL training | 强化学习的数据集 |
| Tune an LLM with RLHF | 使用RLHF调整LLM |
| Evaluate the tuned model | 评估调整后的模型 |
| Google Cloud Setup | Google Cloud设置 |
| Conclusion | 结论 |
课程29:Building and Evaluating Advanced RAG
-
课程链接
-
Colab代码链接
| Building and Evaluating Advanced RAG | 构建和评估高级RAG |
|---|---|
| Introduction | 介绍 |
| Advanced RAG Pipeline | 高级RAG流水线 |
| RAG Triad of metrics | RAG的三重指标 |
| Sentence-window retrieval | 句子窗口检索 |
| Auto-merging retrieval | 自动合并检索 |
| Conclusion | 结论 |
课程30:Quality and Safety for LLM Applications
-
课程链接
-
Colab代码链接
| Quality and Safety for LLM Applications | LLM应用的质量和安全 |
|---|---|
| Introduction | 介绍 |
| Overview | 概览 |
| Hallucinations | 幻觉 |
| Data Leakage | 数据泄露 |
| Refusals and prompt injections | 拒绝和提示注入 |
| Passive and active monitoring | 被动和主动监控 |
| Conclusion | 结论 |
课程31:Vector Databases: from Embeddings to Applications
-
课程链接
-
Colab代码链接
| Vector Databases: from Embeddings to Applications | 向量数据库:从嵌入到应用 |
|---|---|
| Introduction | 介绍 |
| How to Obtain Vector Representations of Data | 如何获取数据的向量表示 |
| Search for Similar Vectors | 搜索相似向量 |
| Approximate nearest neighbours | 近似最近邻 |
| Vector Databases | 向量数据库 |
| Sparse, Dense, and Hybrid Search | 稀疏、密集和混合搜索 |
| Application - Multilingual Search | 应用 - 多语言搜索 |
| Conclusion | 结论 |
课程32:Functions, Tools and Agents with LangChain
-
课程链接
-
Colab代码链接
| Functions, Tools and Agents with LangChain | 使用LangChain的函数、工具和代理 |
|---|---|
| Introduction | 介绍 |
| OpenAI Function Calling | OpenAI函数调用 |
| LangChain Expression Language (LCEL) | LangChain表达语言(LCEL) |
| OpenAI Function Calling in LangChain | 在LangChain中调用OpenAI函数 |
| Tagging and Extraction | 标记和提取 |
| Tools and Routing | 工具和路由 |
| Conversational Agent | 会话代理 |
| Conclusion | 结论 |
课程33:Pair Programming with a Large Language Model
-
课程链接
-
Colab代码链接
| Pair Programming with a Large Language Model | 使用大型语言模型进行结对编程 |
|---|---|
| Introduction | 介绍 |
| Getting Started | 入门 |
| Using a String Template | 使用字符串模板 |
| Pair Programming Scenarios | 结对编程场景 |
| Technical Debt | 技术债务 |
| Conclusion | 结论 |
课程34:Understanding and Applying Text Embeddings
-
课程链接
-
Colab代码链接
| Understanding and Applying Text Embeddings | 理解和应用文本嵌入 |
|---|---|
| Introduction | 介绍 |
| Getting Started With Text Embeddings | 文本嵌入入门 |
| Understanding Text Embeddings | 理解文本嵌入 |
| Visualizing Embeddings | 可视化嵌入 |
| Applications of Embeddings | 嵌入的应用 |
| Text Generation with Vertex AI | 使用Vertex AI生成文本 |
| Building a Q&A System Using Semantic Search | 使用语义搜索构建问答系统 |
| Optional - Google Cloud Setup | 可选 - Google Cloud设置 |
| Conclusion | 结论 |
课程35:How Business Thinkers Can Start Building AI Plugins With Semantic Kernel
-
课程链接
-
Colab代码链接
| How Business Thinkers Can Start Building AI Plugins With Semantic Kernel | 商业思考者如何使用语义内核开始构建AI插件 |
|---|---|
| Introduction | 介绍 |
| Semantic Kernel is Like Your AI Cooking Kitchen | 语义内核就像你的AI烹饪厨房 |
| Cooking Up Flavorful SWOTs with the Kernel | 用内核做出美味的SWOT分析 |
| Organizing The Tools You Make for Later Reuse | 组织你制作的工具以备后用 |
| Frozen Dinner The Design Thinking Meal | 冷冻晚餐的设计思维餐 |
| Dont Forget to Save the Generated Dripping or The Gravy | 不要忘记保存生成的油滴或肉汁 |
| A Kitchen That Responds to Your I’m Hungry is More Than Feasible | 响应你的“我饿了”的厨房是完全可行的 |
| There’s a Fully-Outfitted Professional-Grade Kitchen Ready For You | 有一个装备齐全的专业厨房为你准备好了 |
| Conclusion | 结论 |
课程36:Finetuning Large Language Models
-
课程链接
-
Colab代码链接
| Finetuning Large Language Models | 微调大型语言模型 |
|---|---|
| Introduction | 介绍 |
| Why finetune | 为什么微调 |
| Where finetuning fits in | 微调的适用场景 |
| Instruction finetuning | 指令微调 |
| Data preparation | 数据准备 |
| Training process | 训练过程 |
| Evaluation and iteration | 评估和迭代 |
| Consideration on getting started now | 现在开始的考虑因素 |
| Conclusion | 结论 |
课程37:Large Language Models with Semantic Search
-
课程链接
-
Colab代码链接
| Large Language Models with Semantic Search | 具有语义搜索的大型语言模型 |
|---|---|
| Introduction | 介绍 |
| Keyword Search | 关键词搜索 |
| Embeddings | 嵌入 |
| Dense Retrieval | 稠密检索 |
| ReRank | 重新排序 |
| Generating Answers | 生成答案 |
| Conclusion | 结论 |
课程38:Evaluating and Debugging Generative AI
-
课程链接
-
Colab代码链接
| Evaluating and Debugging Generative AI | 评估和调试生成式AI |
|---|---|
| Introduction | 介绍 |
| Instrument W&B | 工具W&B |
| Training a Diffusion Model with W&B | 使用W&B训练扩散模型 |
| Evaluating Diffusion Models | 评估扩散模型 |
| LLM Evaluation and Tracing with W&B | 使用W&B进行LLM评估和追踪 |
| Finetuning a language model | 微调语言模型 |
| Conclusion | 结论 |
课程39:Building Generative AI Applications with Gradio
-
课程链接
-
Colab代码链接
| Building Generative AI Applications with Gradio | 使用Gradio构建生成式AI应用 |
|---|---|
| Introduction | 介绍 |
| NLP Tasks interface | NLP任务界面 |
| Image Captioning app | 图像字幕应用 |
| Image generation app | 图像生成应用 |
| Describe and Generate Game | 描述和生成游戏 |
| Chat with any LLM | 与任何LLM聊天 |
| Conclusion | 结论 |
课程40:LangChain Chat with Your Data
-
课程链接
-
Colab代码链接
| LangChain Chat with Your Data | 使用LangChain与数据聊天 |
|---|---|
| Introduction | 介绍 |
| Document Loading | 文档加载 |
| Document Splitting | 文档拆分 |
| Vectorstores and Embedding | 向量存储和嵌入 |
| Retrieval | 检索 |
| Question Answering | 问答 |
| Chat | 聊天 |
| Conclusion | 结论 |
课程41:Building Systems with the ****** API
-
课程链接
-
Colab代码链接
| Building Systems with the ****** API | 使用****** API构建系统 |
|---|---|
| Introduction | 介绍 |
| Language Models, the Chat Format and Tokens | 语言模型、聊天格式和词元 |
| Classification | 分类 |
| Moderation | 审核 |
| Chain of Thought Reasoning | 思维链推理 |
| Chaining Prompts | 链接提示 |
| Check Outputs | 检查输出 |
| Evaluation | 评估 |
| Evaluation Part I | 评估第一部分 |
| Evaluation Part II | 评估第二部分 |
| Summary | 总结 |
课程42:How Diffusion Models Work
-
课程链接
-
Colab代码链接
| How Diffusion Models Work | 扩散模型的工作原理 |
|---|---|
| Introduction | 介绍 |
| Intuition | 直觉 |
| Sampling | 采样 |
| Neural Network | 神经网络 |
| Training | 训练 |
| Controlling | 控制 |
| Speeding Up | 加速 |
| Summary | 总结 |




![【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 卢小姐的生日礼物(200分) - 三语言AC题解(Python/Java/Cpp)](https://i-blog.csdnimg.cn/direct/794d7fc8c214456892f965eacc669f95.png)














