本地部署私人知识库的大模型!Llama 3 + RAG!

news2025/5/25 0:22:45

在今天的的教程中,我们将打造更加个性化的大模型,可以定制搭载私人知识库的本地大模型!

我们探讨Meta AI 的尖端 Llama 3 语言模型构建强大的检索增强生成 (RAG) 来实现。通过利用 Llama 3 和 RAG 技术的功能,我们将创建一个应用程序,允许用户与网页进行交互式对话,检索定制化、私人知识库的相关信息并生成对用户查询的准确响应。在本教程中,我们将深入探讨设置开发环境、加载和处理网页数据、创建嵌入和向量存储以及实现 RAG 链以提供卓越用户体验的分步过程。

什么是Llama 3?

Llama 3 是由 Meta AI 开发的最先进的语言模型,擅长理解和生成类似人类的文本。

  • 凭借其令人印象深刻的自然语言处理能力,Llama 3 可以理解复杂的查询、提供准确的响应并参与与上下文相关的对话。

  • 它能够处理广泛的主题和处理效率,使其成为构建智能应用程序的理想选择。

  • 想测试Llama 3的威力吗?立即与 Anakin AI 聊天!(它支持任何可用的 AI 模型!

什么是RAG?

检索增强生成 (RAG) 是一种将信息检索和语言生成相结合以提高问答系统性能的技术。

  • 简单来说,RAG 允许 AI 模型从知识库或文档中检索相关信息,并使用该信息对用户查询生成更准确和上下文适当的响应。

  • 通过利用检索和生成的强大功能,RAG 能够创建智能聊天机器人和问答应用程序,为用户提供高度相关和信息丰富的响应。

  • 对于想要在没有编码经验的情况下运行 RAG 系统的用户,您可以尝试 Anakin AI,在那里您可以使用 No Code Builder 创建很棒的 AI 应用程序!

运行本地 Llama 3 RAG 应用的先决条件

在开始之前,请确保已安装以下先决条件:

  • Python 3.7 or higher

  • Streamlit

  • ollama

  • langchain

  • langchain_community

您可以通过运行以下命令来安装所需的库:

pip install streamlit ollama langchain langchain_community  

使用 Llama-3 在本地运行您自己的 RAG 应用程序的分步指南

第 1 步:设置 Streamlit 应用程序

首先,让我们设置 Streamlit 应用程序的基本结构。创建一个名为 app.py 的新 Python 文件,并添加以下代码:

import streamlit as st  
import ollama  
from langchain.text_splitter import RecursiveCharacterTextSplitter  
from langchain_community.document_loaders import WebBaseLoader  
from langchain_community.vectorstores import Chroma  
from langchain_community.embeddings import OllamaEmbeddings  
  
st.title("Chat with Webpage 🌐")  
st.caption("This app allows you to chat with a webpage using local Llama-3 and RAG")  
  
# Get the webpage URL from the user  
webpage_url = st.text_input("Enter Webpage URL", type="default")  

此代码设置 Streamlit 应用程序的基本结构,包括标题、说明和供用户输入网页 URL 的输入字段。

步骤 2:加载和处理网页数据

接下来,我们需要从指定的网页加载数据并对其进行处理以供进一步使用。将以下代码添加到 app.py

if webpage_url:  
    # 1. Load the data  
    loader = WebBaseLoader(webpage_url)  
    docs = loader.load()  
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)  
    splits = text_splitter.split_documents(docs)  

在这里,我们使用 WebBaseLoader from langchain_community 来加载网页数据。然后,我们使用 RecursiveCharacterTextSplitter from langchain 将加载的文档拆分为更小的块。

第 3 步:创建 Ollama 嵌入和矢量存储

为了能够从网页中有效地检索相关信息,我们需要创建嵌入和向量存储。添加以下代码:

    # 2. Create Ollama embeddings and vector store  
    embeddings = OllamaEmbeddings(model="llama3")  
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)

我们使用 from OllamaEmbeddings langchain_community 类创建 Ollama 嵌入并 llama3 指定模型。然后,我们使用该 Chroma 类创建一个向量存储,传递拆分文档和嵌入。

第 4 步:定义 Ollama Llama-3 模型函数

现在,让我们定义一个函数,该函数利用 Ollama Llama-3 模型根据用户的问题和相关上下文生成响应。添加以下代码:

    # 3. Call Ollama Llama3 model  
    def ollama_llm(question, context):  
        formatted_prompt = f"Question: {question}\n\nContext: {context}"  
        response = ollama.chat(model='llama3', messages=[{'role': 'user', 'content': formatted_prompt}])  
        return response['message']['content']

此函数将用户的问题和相关上下文作为输入。它通过组合问题和上下文来格式化提示,然后使用该 ollama.chat 函数使用 Llama-3 模型生成响应。

第 5 步:设置 RAG 链

为了根据用户的问题从向量存储中检索相关信息,我们需要设置 RAG(Retrieval Augmented Generation)链。添加以下代码:

    # 4. RAG Setup  
    retriever = vectorstore.as_retriever()  
  
    def combine_docs(docs):  
        return "\n\n".join(doc.page_content for doc in docs)  
  
    def rag_chain(question):  
        retrieved_docs = retriever.invoke(question)  
        formatted_context = combine_docs(retrieved_docs)  
        return ollama_llm(question, formatted_context)  
  
    st.success(f"Loaded {webpage_url} successfully!")

在这里,我们使用该 as_retriever 方法从向量存储创建一个检索器。我们定义了一个帮助程序函数 combine_docs ,将检索到的文档组合成一个格式化的上下文字符串。该 rag_chain 函数接受用户的问题,使用检索器检索相关文档,将文档组合到格式化的上下文中,并将问题和上下文传递给 ollama_llm 函数以生成响应。

第 6 步:实现聊天功能

最后,让我们在 Streamlit 应用程序中实现聊天功能。添加以下代码:

    # Ask a question about the webpage  
    prompt = st.text_input("Ask any question about the webpage")  
  
    # Chat with the webpage  
    if prompt:  
        result = rag_chain(prompt)  
        st.write(result)

此代码添加一个输入字段,供用户询问有关网页的问题。当用户输入问题并提交时,将使用用户的问题调用该 rag_chain 函数。然后,生成的响应将使用 st.write 显示。

最后一步:是时候运行应用程序了!

若要运行该应用,请保存 app.py 文件并打开同一目录中的终端。运行以下命令:

streamlit run app.py  

这将启动 Streamlit 应用程序,您可以在 Web 浏览器中通过提供的 URL 访问它。

结论

你已成功构建了在本地运行的 Llama-3 的 RAG 应用。该应用程序允许用户利用本地 Llama-3 和 RAG 技术的强大功能与网页聊天。用户可以输入网页 URL,应用程序将加载和处理网页数据,创建嵌入和向量存储,并使用 RAG 链检索相关信息并根据用户的问题生成响应。

根据需要添加更多功能、改进用户界面或集成其他功能,您可以随意探索和增强应用程序。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1917923.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

雨季的文物保护

随着夏季的到来,高温和多雨给文物保护带来了新的挑战。在这个季节,文物不仅面临着物理和化学损害的风险,还可能因为管理不善而遭受人为破坏。因此,探讨如何在夏季炎热天气中做好文物保护工作,对于维护文化遗产的完整性…

【深度学习】图形模型基础(7):机器学习优化中的方差减少方法(1)

摘要 随机优化是机器学习中至关重要的组成部分,其核心是随机梯度下降算法(SGD),这种方法自60多年前首次提出以来一直被广泛使用。近八年来,我们见证了一个激动人心的新进展:随机优化方法的方差降低技术。这…

小白学c嘎嘎(第二天)入门基础下

温馨提醒:本篇文章起,文章内容排版将更新,层层深入 基础知识 回顾 引用的语法格式:类型& 引⽤别名 引⽤对象; 引用特性 1. 引⽤在定义时必须初始化 2. ⼀个变量可以有多个引⽤ 3. ⼀旦引⽤⼀个实体,再不…

药监局瑞数后缀补环境教学

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! (联系看首页) 前言 之前用…

【python算法学习2】冒泡排序的写法

目的:学习冒泡排序的写法 1 定义 1.1百度百科 冒泡排序_百度百科在程序设计语言中,排序算法主要有冒泡排序、快速排序、选择排序以及计数排序等。冒泡排序(Bubble Sort)是最简单和最通用的排序方法,其基本思想是&…

EchoMimic 数字人项目:语音驱动图像说话项目

参考: https://github.com/BadToBest/EchoMimic 安装 下载模型 下载位置放到下面下载代码目录下, cd EchoMimic 下 export HF_ENDPOINT=https://hf-mirror.comhuggingface-cli download --resume-download --local-dir-use-symlinks False BadToBest/EchoMimic --local-d…

红酒的甜蜜秘密:如何搭配甜点?

在品味美食的旅程中,甜点与红酒的搭配总是能带来意想不到的惊喜。红酒的醇厚与甜点的细腻,在口中交织出美妙的旋律,让人陶醉不已。今天,就让我们一起探索红酒的甜蜜秘密,看看如何与甜点很好搭配,享受这一场…

PCL报ptr 释放错误(Memory.h文件中aligned_free(void *ptr)触发了一个断点)

今天跑PCL处理点云,上来一个下马威,关于内存的。反复检查代码以后还是报错.于是反复查看代码,并搜罗指针释放,都没有解决。一番操作才知道是设置配置问题。下面记录一下解决过程: (1)编译报错弹…

死灰复燃的 LockBit, “现身说法”计算机安全的重要性

LockBit 死灰复燃 2024年2月,一场全球性的名为 “Cronos 行动” 的执法行动夺取了对 LockBit 勒索组织基础设施的控制权并扰乱了其运营。 但是,就像希腊神话中的九头蛇一样,砍掉一个 LockBit 的头并不重要——它可以迅速再生成多个新的头。…

PCL:点云均匀采样滤波并保存ply文件(附完整源码)

均匀采样滤波基本上等同于体素滤波器,但是其不改变点的位置。下采样后,其点云分布基本均匀,但是其点云的准确度要好于体素滤波,因为没有移动点的位置。均匀采样算法:均匀采样通过构建指定半径的球体对点云进行下采样滤…

CV05_深度学习模块之间的缝合教学(1)

1.1 在哪里缝 测试文件?() 训练文件?() 模型文件?(√) 1.2 骨干网络与模块缝合 以Vision Transformer为例,模型文件里有很多类,我们只在最后…

【Pytorch】Conda环境下载慢换源/删源/恢复默认源

文章目录 背景临时换源永久换源打开conda配置condarc换源执行配置 命令行修改源添加源查看源 删源恢复默认源使用示范 背景 随着实验增多,需要分割创建环境的情况时有出现,在此情况下使用conda create --name xx python3.10 pytorch torchvision pytorc…

maven——(重要)手动创建,构建项目

创建项目 手动按照maven层级建好文件夹,并写上java,测试代码和pom文件 构建项目 在dos窗口中执行如下命令 compile编译 当前maven仓库中什么都没有。 在pom所在层级下,执行: mvn compile 就开始显示下面这些,…

整数的英语表示

题目链接 整数的英语表示 题目描述 注意点 0 < num < 2^31 - 1 解答思路 每三个数字形成一组&#xff08;高位不足的部分可以用0填充&#xff09;&#xff0c;使用StringBuilder拼接每组的数字和单位关键是三个数字的英语表示&#xff0c;包含个位、十位、百位&…

java入门-告别C进入java世界

目标 java体系 java开发环境 helloworld java语法 java体系 java开发环境 安装JDK JDK&#xff1a; Java Developement Kit 配置jdk 为什么需要配置 操作系统找不到此程序 操作系统PATH PATH C:\Users\49354>echo %PATH% C:\Program Files (x86)\VMware\VMware Works…

Java---SpringBoot详解一

人性本善亦本恶&#xff0c; 喜怒哀乐显真情。 寒冬暖夏皆有道&#xff0c; 善恶终归一念间。 善念慈悲天下广&#xff0c; 恶行自缚梦难安。 人心如镜自省照&#xff0c; 善恶分明照乾坤。 目录 一&#xff0c;入门程序 ①&#xff0c;创建springboot工程&#…

安泰电压放大器的选型方案是什么

电压放大器是一种常见的电路元件&#xff0c;广泛应用于各种电子设备中。在选择电压放大器的时候&#xff0c;我们需要考虑一系列因素&#xff0c;以确保选型方案能够满足实际需求。下面安泰电子将详细介绍电压放大器选型的主要考虑因素&#xff0c;包括应用需求、技术性能、成…

CSDN回顾与前行:我的创作纪念日——2048天的技术成长与感悟

CSDN回顾与前行&#xff1a;我的创作纪念日——2048天的技术成长与感悟 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 前言 时光荏苒&#xff0c;岁月如梭。转眼间&#xff0c;从我在CSDN上写下第一篇技术博客《2-6 带头结点的链式表操作…

《WebGIS快速开发教程》第7版发布

老规矩先看封面&#xff1a; 可以看到我们在封面上加了“classic”的字样&#xff0c;这意味着第7版将会是经典版本&#xff0c;或者说具有里程碑意义的一个版本。 拿到新书我们可以看到第7版的整体风格是以“业务场景”为核心&#xff0c;所有讲解的知识点和案例都是围绕着业…

一文清晰了解CSS——简单实例

首先一个小技巧&#xff1a; 一定要学会的vsCode格式化整理代码的快捷键&#xff0c;再也不用手动调格式了-腾讯云开发者社区-腾讯云 (tencent.com) CSS选择器用于选择要应用样式的HTML元素。常见的选择器包括&#xff1a; 类选择器&#xff1a;以.开头&#xff0c;用于选择具…