Pix2Pix概述
Pix2Pix是基于条件生成对抗网络实现的一种深度学习图像转换模型。Pix2Pix是将cGAN应用于有监督的图像到图像翻译,包括生成器和判别器。
基础原理
cGAN的生成器是将输入图片作为指导信息,由输入图像不断尝试生成用于迷惑判别器的“假”图像,由输入图像转换输出为相应“假”图像的本质是从像素到另一个像素的映射,而传统GAN的生成器是基于一个给定的随机噪声生成图像,输出图像通过其他约束条件控制生成。Pix2Pix中判别器的任务是判断从生成器输出的图像是真实的训练图像还是生成的“假”图像。在生成器与判别器的不断博弈过程中,模型会达到一个平衡点,生成器输出的图像与真实训练数据使得判别器刚好具有50%的概率判断正确。
CGAN的目标损失函数为:
目标函数是使判别器的损失最大化,而生成器的损失最小化。

数据准备
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar"
download(url, "./dataset", kind="tar", replace=True)
from mindspore import dataset as ds
import matplotlib.pyplot as plt
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator(output_numpy=True))
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data_iter['input_images'][:10], 1):
    plt.subplot(3, 10, i)
    plt.axis("off")
    plt.imshow((image.transpose(1, 2, 0) + 1) / 2)
plt.show()
创建网络
生成器G结构
使用U-Net,它分为两个部分,其中左侧是由卷积和降采样操作组成的压缩路径,右侧是由卷积和上采样组成的扩张路径,扩张的每个网络块的输入由上一层上采样的特征和压缩路径部分的特征拼接而成。

定义UNet Skip Connection Block
import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
class UNetSkipConnectionBlock(nn.Cell):
    def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,
                 submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):
        super(UNetSkipConnectionBlock, self).__init__()
        down_norm = nn.BatchNorm2d(inner_nc)
        up_norm = nn.BatchNorm2d(outer_nc)
        use_bias = False
        if norm_mode == 'instance':
            down_norm = nn.BatchNorm2d(inner_nc, affine=False)
            up_norm = nn.BatchNorm2d(outer_nc, affine=False)
            use_bias = True
        if in_planes is None:
            in_planes = outer_nc
        down_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,
                              stride=2, padding=1, has_bias=use_bias, pad_mode='pad')
        down_relu = nn.LeakyReLU(alpha)
        up_relu = nn.ReLU()
        if outermost:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, pad_mode='pad')
            down = [down_conv]
            up = [up_relu, up_conv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv]
            up = [up_relu, up_conv, up_norm]
            model = down + up
        else:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv, down_norm]
            up = [up_relu, up_conv, up_norm]
            model = down + [submodule] + up
            if dropout:
                model.append(nn.Dropout(p=0.5))
        self.model = nn.SequentialCell(model)
        self.skip_connections = not outermost
    def construct(self, x):
        out = self.model(x)
        if self.skip_connections:
            out = ops.concat((out, x), axis=1)
        return out基于UNet的生成器
class UNetGenerator(nn.Cell):
    def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):
        super(UNetGenerator, self).__init__()
        unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,
                                             norm_mode=norm_mode, innermost=True)
        for _ in range(n_layers - 5):
            unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,
                                                 norm_mode=norm_mode, dropout=dropout)
        unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,
                                             outermost=True, norm_mode=norm_mode)
    def construct(self, x):
        return self.model(x)基于PatchGAN的判别器
生成的矩阵中的每个点代表原图的一小块区域(patch)。通过矩阵中的各个值来判断原图中对应每个Patch的真假。
import mindspore.nn as nn
class ConvNormRelu(nn.Cell):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=4,
                 stride=2,
                 alpha=0.2,
                 norm_mode='batch',
                 pad_mode='CONSTANT',
                 use_relu=True,
                 padding=None):
        super(ConvNormRelu, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if not padding:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
                             has_bias=has_bias, padding=padding)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)
    def construct(self, x):
        output = self.features(x)
        return output
class Discriminator(nn.Cell):
    def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [
            nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),
            nn.LeakyReLU(alpha)
        ]
        nf_mult = ndf
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * ndf
            layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * ndf
        layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))
        self.features = nn.SequentialCell(layers)
    def construct(self, x, y):
        x_y = ops.concat((x, y), axis=1)
        output = self.features(x_y)
        return outputPix2Pix的生成器和判别器初始化
实例化Pix2Pix生成器和判别器
import mindspore.nn as nn
from mindspore.common import initializer as init
g_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'
net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,
                              ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))
net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,
                                  alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))
class Pix2Pix(nn.Cell):
    """Pix2Pix模型网络"""
    def __init__(self, discriminator, generator):
        super(Pix2Pix, self).__init__(auto_prefix=True)
        self.net_discriminator = discriminator
        self.net_generator = generator
    def construct(self, reala):
        fakeb = self.net_generator(reala)
        return fakeb训练
包括训练判别器和生成器。训练判别器的目的是最大程度地提高判别图像真伪的概率。训练生成器是希望能产生更好的虚假图像。
代码实现:
import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensor
epoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100
def get_lr():
    lrs = [lr] * dataset_size * n_epochs
    lr_epoch = 0
    for epoch in range(n_epochs_decay):
        lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decay
        lrs += [lr_epoch] * dataset_size
    lrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)
    return Tensor(np.array(lrs).astype(np.float32))
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()
def forword_dis(reala, realb):
    lambda_dis = 0.5
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    pred1 = net_discriminator(reala, realb)
    loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))
    loss_dis = loss_d * lambda_dis
    return loss_dis
def forword_gan(reala, realb):
    lambda_gan = 0.5
    lambda_l1 = 100
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    loss_1 = loss_f(pred0, ops.ones_like(pred0))
    loss_2 = l1_loss(fakeb, realb)
    loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1
    return loss_gan
d_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)
grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())
def train_step(reala, realb):
    loss_dis, d_grads = grad_d(reala, realb)
    loss_gan, g_grads = grad_g(reala, realb)
    d_opt(d_grads)
    g_opt(g_grads)
    return loss_dis, loss_gan
if not os.path.isdir(ckpt_dir):
    os.makedirs(ckpt_dir)
g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)
for epoch in range(epoch_num):
    for i, data in enumerate(data_loader):
        start_time = datetime.datetime.now()
        input_image = Tensor(data["input_images"])
        target_image = Tensor(data["target_images"])
        dis_loss, gen_loss = train_step(input_image, target_image)
        end_time = datetime.datetime.now()
        delta = (end_time - start_time).microseconds
        if i % 2 == 0:
            print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))
        d_losses.append(dis_loss.asnumpy())
        g_losses.append(gen_loss.asnumpy())
    if (epoch + 1) == epoch_num:
        mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")推理
from mindspore import load_checkpoint, load_param_into_net
param_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):
    plt.subplot(2, 10, i + 1)
    plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
    plt.subplot(2, 10, i + 11)
    plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

总结
Pix2Pix作为GAN的一种变体,再生成图像和扩充数据方面有着重要作用。



















