OpenCV视觉--视频人脸微笑检测(超详细,附带检测资源)

news2025/7/19 6:16:24

目录

概述       

 具体实现

1.加载分类器

 2.打开摄像头并识别人脸

3.处理人脸并检测是否微笑

效果

总结


概述       

        OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,广泛应用于图像处理和视频分析等领域。在OpenCV的众多功能中,人脸微笑检测是一项极具吸引力的技术,它结合了人脸检测技术和表情分析技术,能够自动识别和定位图像或视频中人脸的微笑表情。这一技术在人机交互、情感分析、安全监控以及用户体验研究等领域展现出巨大的应用潜力和价值。

        人脸微笑检测的实现过程通常包括两个主要步骤:首先,通过人脸检测技术定位图像或视频中的人脸区域;然后,在检测到的人脸区域上应用微笑检测算法,判断人脸是否呈现微笑表情。

 具体实现

1.加载分类器

模型资源在文章开头

#导入opencv库,安装可用 pip install opencv-python
import cv2
#加载人脸检测模型
face = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
#加载微笑检测模型
smile = cv2.CascadeClassifier('./haarcascade_smile.xml')

 2.打开摄像头并识别人脸

cap = cv2.VideoCapture(0)  # 初始化摄像头
while True:  # 处理每一帧
    ret, frame = cap.read()  # 读取一帧
    frame = cv2.flip(frame, 1)  # 图片翻转, 水平翻转
    # 没有读到,直接退出
    if ret is None:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  # 灰度化(彩色BGR-->灰度Gray)

    face_detect = face.detectMultiScale(gray,  # 人脸检测
                                        scaleFactor=1.1,
                                        minNeighbors=5,
                                        minSize=(5, 5))

objects = cv2.CascadeClassifier.detectMultiScale( image,scaleFactor,minNeighbors, minSize,maxSize)
其中,各个参数及返回值的含义如下。
·image:待检测图像,通常为灰度图像。
·scaleFactor:表示在前后两次相继扫描中搜索窗口的缩放比例。识别,扫描,按照不同比例来进行扫描
·minNeighbors:表示构成检测目标的相邻矩形的最小个数。在默认情况下,该参数的值为 3,
表示有 3 个以上的检测标记存在时才认为存在人脸。如果希望提高检测的准确率可以将该参数的值设置得更大,
但这样做可能会让一些人脸无法被检测到。
·minSize: 目标的最小尺寸,小于这个尺寸的目标将被忽略。
·maxSize: 目标的最大尺寸,大于这个尺寸的目标将被忽略。通常情况下,将该可选参数省略即可。
若 maxSize 和 minSize 大小一致,则表示仅在一个尺度上查找目标。
·objects: 返回值,目标对象的矩形框向量组。该值是一组矩形信息,
包含每个检测到的人脸对应的矩形框的信息 (x轴方向位置、y轴方向位置、宽度、高度)。

3.处理人脸并检测是否微笑

    # ==================处理每个人脸=======================
    for (x, y, w, h) in face_detect:  #得到人脸所在位置
        #绘制方框
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        # 提取人脸所在区域
        smile_rect = gray[y:y + h, x:x + w]
        # 微笑检测,仅在人脸区域内检测
        smile_detect = smile.detectMultiScale(smile_rect,
                                              scaleFactor=1.5,
                                              minNeighbors=5,
                                              minSize=(50, 50))

        for (sx, sy, sw, sh) in smile_detect:
            # 显示文字“smile”表示微笑了
            cv2.putText(frame, 'smile', (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0), 2)
    # 显示结果
    cv2.imshow('frame', frame)
    key = cv2.waitKey(1)
    if key == 27:  #27为键盘Esc键
        break

cv2.destroyAllWindows()  #关闭打开的图像窗口
cap.release()  #释放视频捕获对象

cv2.putText(image, ' 绘制内容 ', (绘制位置), 字体类型, 字体大小, (字体颜色), 线条粗细)

效果

该图为打开摄像头后,将手机图片放置摄像头前检测的效果

总结

        通过OpenCV实现人脸微笑检测,不仅能够帮助我们更好地理解和分析人类的情感状态,还能够为各种智能应用提供丰富的情感信息支持。例如,在人机交互系统中,通过检测用户的微笑表情,系统可以自动调整交互策略,提供更加贴心、个性化的服务;在安全监控领域,通过实时监测人脸的微笑表情,可以及时发现异常情况,提高安全防范能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1873507.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

精密机器中的交叉导轨负荷与容许负荷的差异!

交叉导轨的设计和制造过程中,负荷及容许负荷是至关重要的参数,只有准确计算出交叉导轨的载荷,才能保证交叉导轨的稳定性和使用寿命。 负荷和容许载荷是两个不同的参数,那这两者的有什么差异呢? 交叉导轨的负荷是指其承…

[深度学习] 前馈神经网络

前馈神经网络(Feedforward Neural Network, FFNN)是人工神经网络中最基本的类型,也是许多复杂神经网络的基础。它包括一个输入层、一个或多个隐藏层和一个输出层。以下是详细介绍: 1. 结构 1. 输入层(Input Layer&am…

在微信小程序中使用svg图标

在项目中引入图标组件是很常见的一个问题&#xff0c;但是这里我在小程序中引入图标组件的时候报错了&#xff01; 这个主要原因是 微信小程序上不支持 SVG 字体图标&#xff01; <image src"./xx.svg"/>所以参考微信开放社区 我们想要在微信小程序中使用svg图…

java基于ssm+jsp 电子商城系统

1管理员功能模块 管理员登录&#xff0c;通过填写用户名、密码进行登录&#xff0c;如图1所示。 图1管理员登录界面图 管理员登录进入电子商城系统可以查看个人中心、用户管理、医生管理、药品信息管理、线上诊疗管理、医生信息管理、管理员管理、论坛管理、系统管理、订单管…

智慧数据中心可视化:高效管理与直观监控的未来

随着数据中心的规模和复杂性不断增加&#xff0c;传统管理方式难以满足需求。智慧数据中心通过图扑可视化实现实时数据监控和智能分析&#xff0c;将复杂的基础设施直观呈现&#xff0c;极大提升了运维效率、故障排查速度和资源优化能力&#xff0c;为企业提供现代化、智能化的…

卡尔曼滤波公式推导笔记

视频见B站上DR_CAN的卡尔曼滤波器 【卡尔曼滤波器】3_卡尔曼增益超详细数学推导 &#xff5e;全网最完整_哔哩哔哩_bilibili

4. node联调devtools

4. node联调devtools 把node代码放在开发者工具执行代码执行命令 node --inspect-brk js文件浏览器执行命令 chrome://inspect/#devices检测到文件之后会有个点击选项,点击进入就能调试自己的代码 有了开发者工具调试之后我们可以给自己的吐环境脚本在完善一下,当获取的参数是…

实力认可!安全狗受聘成为福建省网信系统2024年度网络安全技术支撑单位

6月6日&#xff0c;福建省委网信办组织召开福建省网信系统2024年度网络安全技术支撑单位座谈会。 作为国内云原生安全领导厂商&#xff0c;安全狗也受邀出席此次活动。 省委宣传部副部长、省委网信办主任、省互联网信息办公室主任张远出席会议并颁发支撑单位证书。安全狗凭借出…

Java面向对象特性

Java继承&#xff1a; 继承的概念&#xff1a; 在Java中&#xff0c;继承&#xff08;inheritance&#xff09;是面向对象编程的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。通过继承&#xff0c…

Java养老护理助浴陪诊小程序APP源码

&#x1f496;护理助浴陪诊小程序&#x1f496; 一、引言&#xff1a;养老新趋势&#x1f331; 在快节奏的现代生活中&#xff0c;养老问题逐渐成为了社会关注的焦点。如何为老年人提供便捷、贴心的服务&#xff0c;让他们晚年生活更加安心、舒适&#xff0c;是我们每个人都需…

BUUCTF--WEB

首頁 - OWASP Top 10:2021 [极客大挑战 2019]EasySQL 类型:sql注入 使用万能密码 flag{f580db5b-c0c9-4b13-bfb6-adfa525c93f5} [极客大挑战 2019]Havefun 类型:代码审计 F12打开浏览器控制台 GET请求,在url添加参数/?cat=dog访问 返回flag{f60c7d5c-9f44-4e92-88c0…

驱动LSM6DS3TR-C实现高效运动检测与数据采集(6)----FIFO数据读取与配置

驱动LSM6DS3TR-C实现高效运动检测与数据采集.6--FIFO数据读取与配置 概述视频教学样品申请源码下载主要内容生成STM32CUBEMX串口配置IIC配置CS和SA0设置ICASHE修改堆栈串口重定向参考驱动程序FIFO参考程序初始化管脚获取ID复位操作设置量程BDU设置设置速率FIFO读取程序设置FIFO…

鸿蒙开发 之 健康App案例

1.项目介绍 该项目是记录用户日常饮食情况&#xff0c;以及针对不同食物摄入营养不同会有对应的营养摄入情况和日常运动消耗情况&#xff0c;用户可以自己添加食品以及对应的热量。 1.1登陆页 1.2饮食统计页 1.3 食物列表页 2.登陆页 2.1自定义弹框 import preferences from oh…

词向量模型

文章目录 RNN词向量模型模型整体框架训练数据构建CBOW与Skip-gram模型负采样 RNN 卷积神经网络&#xff08;CNN&#xff09;主要应用计算机视觉&#xff0c;而递归神经网络&#xff08;RNN&#xff09;主要应用于自然语言处理。 递归神经网络会涉及处理之前所有的数据&#x…

Linux高级编程——线程

pthread 线程 概念 &#xff1a;线程是轻量级进程&#xff0c;一般是一个进程中的多个任务。 进程是系统中最小的资源分配单位. 线程是系统中最小的执行单位。 优点&#xff1a; 比多进程节省资源&#xff0c;可以共享变量 进程会占用&am…

【漏洞复现】金和OA 未授权访问

【产品介绍】 金和OA协同办公管理系统C6软件&#xff08;简称金和OA&#xff09;&#xff0c;本着简单、适用、高效的原则&#xff0c;贴合企事业单位的实际需求&#xff0c;实行通用化、标准化、智能化、人性化的产品设计&#xff0c;充分体现企事业单位规范管理、提高办公效…

ubuntu22.04编译安装tesseract

1、 为什么用自己编译安装&#xff0c;而不采用apt安装&#xff1f; 由于tesseract有很多依赖包&#xff0c;直接用deb包或者rpm包等安装包安装很复杂&#xff0c;不一定能成功安装。 2、安装基本的依赖包 sudo apt update sudo apt install g autoconf automake libtool pkg…

如何利用ChatGPT寻找科研创新点?分享5个有效实践技巧

欢迎关注&#xff1a;智写AI&#xff0c;为大家带来最酷最有效的智能AI学术科研写作攻略。关于使用ChatGPT等AI学术科研的相关问题可以和作者七哥交流&#xff1a;yida985 地表功能最强大的高级学术专业版已经开放&#xff0c;拥有全球领先的GPT学术科研应用&#xff0c;有兴趣…

44 mysql batch insert 的实现

前言 我们这里 来探讨一下 insert into $fields values ($values1), ($values2), ($values3); 的相关实现, 然后 大致来看一下 为什么 他能这么快 按照 我的思考, 应该里里面有 批量插入才对, 但是 调试结果 发现令我有一些意外 呵呵 果然 只有调试才是唯一的真理 相比于 …

如何用一个二维码实现企业固定资产管理?

固定资产管理中普遍存在盘点难、家底不清、账实不一致、权责不清晰等问题。如果平时不规范化执行&#xff0c;年终面对上上下下、大大小小、成百上千件物资要进行盘点整理的时候&#xff0c;会是十分痛苦且低效的事情。 今天这篇文章就来给大家推荐几家便宜好用的二维码固定资…