一、情景描述
我们知道,在MapTask阶段开始时,需要InputFormat来读取数据
 而在ReduceTask阶段结束时,将处理完成的数据,输出到磁盘,此时就要用到OutputFormat
在之前的程序中,我们都没有设置过这部分配置
 所以,采用的是默认输出格式:TextOutputFormat
在实际工作中,我们的输出不一定是到磁盘,可能是输出到MySQL、HBase等
那么,如何实现自定义的OutputFormat?
 
二、案例
1、源数据
http://www.baidu.com
http://www.google.com
http://cn.bing.com
http://www.atguigu.com
http://www.sohu.com
http://www.baidu.com
http://www.sina.com
http://www.sin2a.com
http://www.baidu.com
http://www.sin2desa.com
http://www.sindsafa.com
 
2、需求分析
过滤输入的log日志,包含atguigu的网站输出到e:/atguigu.log,不包含atguigu的网站输出到e:/other.log。
3、代码实现
LogMapper.java
package com.atguigu.mapreduce.outputformat;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // http://www.baidu.com
        //http://www.google.com
        // (http://www.google.com, NullWritable)
        // 不做任何处理
        context.write(value, NullWritable.get());
    }
}
 
LogReducer.java
package com.atguigu.mapreduce.outputformat;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class LogReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        // http://www.baidu.com
        // http://www.baidu.com
        // 防止有相同数据,丢数据
        for (NullWritable value : values) {
            context.write(key, NullWritable.get());
        }
    }
}
 
LogRecordWriter.java
package com.atguigu.mapreduce.outputformat;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import java.io.IOException;
public class LogRecordWriter extends RecordWriter<Text, NullWritable> {
    private  FSDataOutputStream atguiguOut;
    private  FSDataOutputStream otherOut;
    public LogRecordWriter(TaskAttemptContext job) {
        // 创建两条流
        try {
            FileSystem fs = FileSystem.get(job.getConfiguration());
            atguiguOut = fs.create(new Path("D:\\hadoop\\atguigu.log"));
            otherOut = fs.create(new Path("D:\\hadoop\\other.log"));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    @Override
    public void write(Text key, NullWritable value) throws IOException, InterruptedException {
        String log = key.toString();
        // 具体写
        if (log.contains("atguigu")){
            atguiguOut.writeBytes(log+"\n");
        }else {
            otherOut.writeBytes(log+"\n");
        }
    }
    @Override
    public void close(TaskAttemptContext context) throws IOException, InterruptedException {
        // 关流
        IOUtils.closeStream(atguiguOut);
        IOUtils.closeStream(otherOut);
    }
}
 
LogOutputFormat.java
package com.atguigu.mapreduce.outputformat;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {
    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
        LogRecordWriter lrw = new LogRecordWriter(job);
        return lrw;
    }
}
 
LogDriver.java
package com.atguigu.mapreduce.outputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class LogDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        job.setJarByClass(LogDriver.class);
        job.setMapperClass(LogMapper.class);
        job.setReducerClass(LogReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);
        //设置自定义的outputformat
        job.setOutputFormatClass(LogOutputFormat.class);
        FileInputFormat.setInputPaths(job, new Path("D:\\input\\inputoutputformat"));
        //虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat
        //而fileoutputformat要输出一个_SUCCESS文件,所以在这还得指定一个输出目录
        FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\output1111"));
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}
 
3、测试

 
三、总结
关键文件:
 LogRecordWriter.java
 LogOutputFormat.java
 LogDriver.java
        //设置自定义的outputformat
        job.setOutputFormatClass(LogOutputFormat.class);
                

















