1.数据参数化介绍
只要你是负责编写自动化测试脚本的,数据参数化这个思想你就肯定会用 ,数据参数化的工具你肯定的懂一些 ,因为它能大大的提高我们自动化脚本编写效率 。
1.1什么是数据参数化
所谓的数据参数化 ,是指所执行的测试用例步骤相同、而数据不同 ,每次运行用例只变化的是数据 ,于是将这些数据专门放在一起进行批量循环运行 ,从而完成测试用例执行的目的 。
以登录功能为例 ,若一个登录功能每次操作的步骤是 :
- 输入用户名
- 输入密码
- 点击登录按钮 。
但是,因为每次输入的数据不同,导致生成的测试用例就不同了 ,同样还是这个登录功能,加上数据就变为以下的用例了 。
- case1 : 输入正确的用户名 ,输入正确的密码 ,点击登录
- case2 : 输入正确的用户,输入错误的密码,点击登录
- case3 :输入正确的用户名,输入空的密码,点击登录
- casen : ...
可以看到 ,在这些用例中,每条用例最大的不同是什么呢 ?其实就是数据不同 。但是由于数据不同,从而生成了多条测试用例 ,在功能测试中,这些用例是需要分别写、分别执行 。
1.2.为什么要进行数据参数化 ?
在功能测试中,即使是相同的步骤 ,只是数据不同 ,我们亦然也要尽量分开编写每一条用例 ,比如像上面的编写方式 ,因为这些编写它的易读性更好 ,功能测试设计测试用例和执行用例往往不是一个人 ,所以用例编写的易读性是就是一个很重要的因素 。
但是如果将上面的用例进行自动化实现 ,虽然按照一条用例对应一个方法是一种很清晰的思路 ,但是它的最大问题就是代码冗余 ,当一个功能中步骤相同,只是数据不同时,你的数据越多,代码冗余度就越高 。你会发现每个测试方法中的代码就会是相同的 。
像代码冗余这种问题,在编写自动化时是必须要考虑的一个问题,因为随着代码量越多 ,冗余度越高、越难维护 。
以下就是是通过正常方式实现登录的自动化脚本 :
-
import unittest -
from package_unittest.login import login -
class TestLogin(unittest.TestCase): -
# case1 : 输入正确的用户名和正确的密码进行登录 -
def test_login_success(self): -
expect_reslut = 0 -
actual_result = login('admin','123456').get('code') -
self.assertEqual(expect_reslut,actual_result) -
# case2 : 输入正确的用户名和错误的密码进行登录 -
def test_password_is_wrong(self): -
expect_reslut = 3 -
actual_result = login('admin', '1234567').get('code') -
self.assertEqual(expect_reslut, actual_result) -
# case3 : 输入正确的用户名和空的密码进行登录 -
def test_password_is_null(self): -
expect_reslut = 2 -
actual_result = login('admin', '').get('code') -
self.assertEqual(expect_reslut, actual_result)
可以看到,三条用例对应三个测试方法,虽然清晰 ,代码每个方法中的代码几乎是相同的。
那如果用参数化实现的代码是什么呢 ? 可以看下面的这段代码 :
-
class TestLogin(unittest.TestCase): -
@parameterized.expand(cases) -
def test_login(self,expect_result,username,password): -
actual_result = login(username,password).get('code') -
self.assertEqual(expect_result,actual_result)
以上代码只有一条用例 ,不管这个功能有几条都能执行 。
通过上面两种形式的比较可以看出 :为什么要进行数据参数化呢 ?其实就是降低代码冗余、提高代码复用度 ,将主要编写测试用例的时间转化为编写测试数据上来 。
1.3.如何进行数据参数化
在代码中实现数据参数化都需要借助于外部工具 ,比如专门用于unittest的ddt , 既支持unittest、也支持pytest的parameterized ,专门在pytest中使用的fixture.params .
| 参数化工具 | 支持测试框架 | 备注 |
| ddt | unittest | 第三方包,需要下载安装 |
| parameterized | nose,unittest,pytest | 第三方包,需要下载安装 |
| @pytest.mark.parametrize | pytest | 本身属于pytest中的功能 |
| @pytest.fixture(params=[]) | pytest | 本身属于pytest中的功能 |
以上实现数据参数化的工具有两个共同点:
- 都能实现数据参数化
- 都时装饰器来作用于测试用例脚本 。
2.模块介绍
1.下载安装 :
-
# 下载 -
pip install parameterized -
# 验证 : -
pip show parameterized
2.导包
-
# 直接导入parameterized类 -
from parameterized import parameterized
3.官网示例
@parameterized 和 @parameterized.expand 装饰器接受列表 或元组或参数(...)的可迭代对象,或返回列表或 可迭代:
-
from parameterized import parameterized, param -
# A list of tuples -
@parameterized([ -
(2, 3, 5), -
(3, 5, 8), -
]) -
def test_add(a, b, expected): -
assert_equal(a + b, expected) -
# A list of params -
@parameterized([ -
param("10", 10), -
param("10", 16, base=16), -
]) -
def test_int(str_val, expected, base=10): -
assert_equal(int(str_val, base=base), expected) -
# An iterable of params -
@parameterized( -
param.explicit(*json.loads(line)) -
for line in open("testcases.jsons") -
) -
def test_from_json_file(...): -
... -
# A callable which returns a list of tuples -
def load_test_cases(): -
return [ -
("test1", ), -
("test2", ), -
] -
@parameterized(load_test_cases) -
def test_from_function(name): -
...
请注意,使用迭代器或生成器时,将加载所有项 在测试运行开始之前放入内存(我们显式执行此操作以确保 生成器在多进程或多线程中只耗尽一次 测试环境)。
@parameterized装饰器可以使用测试类方法,并且可以独立使用 功能:
-
from parameterized import parameterized -
class AddTest(object): -
@parameterized([ -
(2, 3, 5), -
]) -
def test_add(self, a, b, expected): -
assert_equal(a + b, expected) -
@parameterized([ -
(2, 3, 5), -
]) -
def test_add(a, b, expected): -
assert_equal(a + b, expected)
@parameterized.expand可用于生成测试方法 无法使用测试生成器的情况(例如,当测试 类是单元测试的一个子类。测试用例):
-
import unittest -
from parameterized import parameterized -
class AddTestCase(unittest.TestCase): -
@parameterized.expand([ -
("2 and 3", 2, 3, 5), -
("3 and 5", 3, 5, 8), -
]) -
def test_add(self, _, a, b, expected): -
assert_equal(a + b, expected)
将创建测试用例:
-
$ nosetests example.py -
test_add_0_2_and_3 (example.AddTestCase) ... ok -
test_add_1_3_and_5 (example.AddTestCase) ... ok -
---------------------------------------------------------------------- -
Ran 2 tests in 0.001s -
OK
请注意,@parameterized.expand 的工作原理是在测试上创建新方法 .class。如果第一个参数是字符串,则该字符串将添加到末尾 的方法名称。例如,上面的测试用例将生成方法test_add_0_2_and_3和test_add_1_3_and_5。
@parameterized.expand 生成的测试用例的名称可以是 使用 name_func 关键字参数进行自定义。该值应 是一个接受三个参数的函数:testcase_func、param_num、 和参数,它应该返回测试用例的名称。testcase_func是要测试的功能,param_num将是 参数列表中测试用例参数的索引,参数(参数的实例)将是将使用的参数。
-
import unittest -
from parameterized import parameterized -
def custom_name_func(testcase_func, param_num, param): -
return "%s_%s" %( -
testcase_func.__name__, -
parameterized.to_safe_name("_".join(str(x) for x in param.args)), -
) -
class AddTestCase(unittest.TestCase): -
@parameterized.expand([ -
(2, 3, 5), -
(2, 3, 5), -
], name_func=custom_name_func) -
def test_add(self, a, b, expected): -
assert_equal(a + b, expected)
将创建测试用例:
-
$ nosetests example.py -
test_add_1_2_3 (example.AddTestCase) ... ok -
test_add_2_3_5 (example.AddTestCase) ... ok -
---------------------------------------------------------------------- -
Ran 2 tests in 0.001s -
OK
param(...) 帮助程序类存储一个特定测试的参数 箱。它可用于将关键字参数传递给测试用例:
-
from parameterized import parameterized, param -
@parameterized([ -
param("10", 10), -
param("10", 16, base=16), -
]) -
def test_int(str_val, expected, base=10): -
assert_equal(int(str_val, base=base), expected)
如果测试用例具有文档字符串,则该测试用例的参数将为 附加到文档字符串的第一行。可以控制此行为 doc_func参数:
-
from parameterized import parameterized -
@parameterized([ -
(1, 2, 3), -
(4, 5, 9), -
]) -
def test_add(a, b, expected): -
""" Test addition. """ -
assert_equal(a + b, expected) -
def my_doc_func(func, num, param): -
return "%s: %s with %s" %(num, func.__name__, param) -
@parameterized([ -
(5, 4, 1), -
(9, 6, 3), -
], doc_func=my_doc_func) -
def test_subtraction(a, b, expected): -
assert_equal(a - b, expected) -
$ nosetests example.py -
Test addition. [with a=1, b=2, expected=3] ... ok -
Test addition. [with a=4, b=5, expected=9] ... ok -
0: test_subtraction with param(*(5, 4, 1)) ... ok -
1: test_subtraction with param(*(9, 6, 3)) ... ok -
---------------------------------------------------------------------- -
Ran 4 tests in 0.001s -
OK
最后@parameterized_class参数化整个类,使用 属性列表或将应用于 .class
-
from yourapp.models import User -
from parameterized import parameterized_class -
@parameterized_class([ -
{ "username": "user_1", "access_level": 1 }, -
{ "username": "user_2", "access_level": 2, "expected_status_code": 404 }, -
]) -
class TestUserAccessLevel(TestCase): -
expected_status_code = 200 -
def setUp(self): -
self.client.force_login(User.objects.get(username=self.username)[0]) -
def test_url_a(self): -
response = self.client.get('/url') -
self.assertEqual(response.status_code, self.expected_status_code) -
def tearDown(self): -
self.client.logout() -
@parameterized_class(("username", "access_level", "expected_status_code"), [ -
("user_1", 1, 200), -
("user_2", 2, 404) -
]) -
class TestUserAccessLevel(TestCase): -
def setUp(self): -
self.client.force_login(User.objects.get(username=self.username)[0]) -
def test_url_a(self): -
response = self.client.get("/url") -
self.assertEqual(response.status_code, self.expected_status_code) -
def tearDown(self): -
self.client.logout()
@parameterized_class装饰器接受class_name_func论点, 它控制由 @parameterized_class 生成的参数化类的名称:
-
from parameterized import parameterized, parameterized_class -
def get_class_name(cls, num, params_dict): -
# By default the generated class named includes either the "name" -
# parameter (if present), or the first string value. This example shows -
# multiple parameters being included in the generated class name: -
return "%s_%s_%s%s" %( -
cls.__name__, -
num, -
parameterized.to_safe_name(params_dict['a']), -
parameterized.to_safe_name(params_dict['b']), -
) -
@parameterized_class([ -
{ "a": "hello", "b": " world!", "expected": "hello world!" }, -
{ "a": "say ", "b": " cheese :)", "expected": "say cheese :)" }, -
], class_name_func=get_class_name) -
class TestConcatenation(TestCase): -
def test_concat(self): -
self.assertEqual(self.a + self.b, self.expected) -
$ nosetests -v test_math.py -
test_concat (test_concat.TestConcatenation_0_hello_world_) ... ok -
test_concat (test_concat.TestConcatenation_0_say_cheese__) ... ok
使用单个参数
如果测试函数只接受一个参数并且该值不可迭代, 然后可以提供值列表,而无需将每个值包装在 元:
-
@parameterized([1, 2, 3]) -
def test_greater_than_zero(value): -
assert value > 0
但请注意,如果单个参数是可迭代的(例如列表或 元组),那么它必须包装在元组、列表或 param(...) 装饰器中:
-
@parameterized([ -
([1, 2, 3], ), -
([3, 3], ), -
([6], ), -
]) -
def test_sums_to_6(numbers): -
assert sum(numbers) == 6
虽然看似以上功能支持的挺多 ,但其实真正用的不多 ,因为它跟框架有很大关系的 。具体说明下 :
总结:
- 它支持nose是最好的 . 如果你的自动化中使用nose,那么以上功能基本都能用到 。
- 如果你用的测试框架是unittest ,你只能用到它的expand()这个函数 ,不过有这个函数也就够了 。
- 如果你用的测试框架是pytest , 它支持了Pytest3的版本,再高版本的就不支持了,同时pytest也有自己的参数化工具,一般也不用它了。
3.项目实践
通过数据参数胡重新编写登录测试用例 ,将以前yaml中的登录用例数据转化为paramterized的数据格式 ,它的数据格式要求为:[(),(),()] . 所以,编写测试用例的数据就变为了以下的代码 。
-
# 将登录数据转化为paramterize所识别的格式。 -
def get_data(): -
yaml_path = get_file_path('login.yaml') # 获取login.yaml的全路径 -
result = read_yaml(yaml_path) # 转化为python对象 -
login_data = result.get('login') # 获取字典中login的值 -
logger.debug("登录结果:{}".format(login_data)) -
return (login_data) # 获取字典中login的值 -
@allure.epic("vshop") -
@allure.story("登录") -
class TestLogin(unittest.TestCase): -
# case1 : 测试登录功能 -
@parameterized.expand(get_data()) -
def test_login(self,case_name,username,password,code,message): -
logger.info("从参数化获取的数据:{}|{}|{}|{}|{}".format(case_name,username,password,code,message)) -
with allure.step("执行用例:{},输入用户名:{},输入密码:{}".format(case_name,username,password)): -
login_result = login(username,password) -
self.assertEqual(code, login_result.get('errno')) -
self.assertEqual(message, login_result.get('errmsg'))
这样的话,我们只编写了一条测试用例 ,但是在测试数据中有几条数据 ,都可以正常运行 。
行动吧,在路上总比一直观望的要好,未来的你肯定会感 谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入扣群: 455787643,里面有各种软件测试+开发资料和技术可以一起交流学习哦。
总结:感谢每一个认真阅读我文章的人!!!
作为一位过来人也是希望大家少走一些弯路,如果你不想再体验一次学习时找不到资料,没人解答问题,坚持几天便放弃的感受的话,在这里我给大家分享一些自动化测试的学习资源,希望能给你前进的路上带来帮助。

软件测试面试文档
我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


视频文档获取方式:
这份文档和视频资料,对于想从事【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!以上均可以分享,点下方小卡片即可自行领取。
![[AI StoryDiffusion] 创造神奇故事,AI漫画大乱斗!](https://img-blog.csdnimg.cn/img_convert/c66405c7434764a89d9a40b411cddc50.jpeg)












![[NCTF 2018]flask真香](https://img-blog.csdnimg.cn/direct/48365d5d1d9e4a98b0dcb5bb8f23d041.png)





