文章目录
- 前言
- 一、模型说明
- 二、示例
- 1.求解步骤
- 2.示例代码
 
- 总结
前言
介绍了如何处理多维特征的输入问题
一、模型说明
多维问题分类模型
 
二、示例
1.求解步骤
1.载入数据集:数据集用路径D:\anaconda\Lib\site-packages\sklearn\datasets\data下的diabetes.csv,输入有8个维度
 2.创建模型:维度8-6-4-2-1
 3.选择损失函数和优化器
 3.进行训练
2.示例代码
代码如下(示例):
import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])  # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
print("input data.shape", x_data.shape)
y_data = torch.from_numpy(xy[:, [-1]])  # [-1] 最后得到的是个矩阵
# print(x_data.shape)
# design model using class
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 2)
        self.linear4 = torch.nn.Linear(2, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))  # y hat
        x = self.sigmoid(self.linear4(x))  # y hat
        return x
model = Model()
# construct loss and optimizer
criterion = torch.nn.BCELoss(size_average = True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    # print(epoch, loss.item())
    print(epoch, loss.item())
    epoch_list.append(epoch)
    loss_list.append(loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if epoch % 100 == 99:
        y_pred_label = torch.where(y_pred >= 0.5, torch.tensor([1.0]), torch.tensor([0.0]))
        acc = torch.eq(y_pred_label, y_data).sum().item() / y_data.size(0)
        print("loss = ", loss.item(), "acc = ", acc)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
得到如下结果:
 
 
总结
PyTorch学习6:多维特征输入



















