一、向量空间背景
(1) 具有如下点内积或标量内积的实数域
    
     
      
       
        R
       
      
      
       R
      
     
    R上的欧式空间
    
     
      
       
        
         R
        
        
         N
        
       
      
      
       R^N
      
     
    RN:
 
     
      
       
        
         ⟨
        
        
         u
        
        
         ,
        
        
         v
        
        
         ⟩
        
        
         =
        
        
         
          u
         
         
          T
         
        
        
         v
        
        
         =
        
        
         
          u
         
         
          0
         
        
        
         
          v
         
         
          0
         
        
        
         +
        
        
         
          u
         
         
          1
         
        
        
         
          v
         
         
          1
         
        
        
         +
        
        
         ⋯
        
        
         +
        
        
         
          u
         
         
          
           N
          
          
           −
          
          
           1
          
         
        
        
         
          v
         
         
          
           N
          
          
           −
          
          
           1
          
         
        
        
         =
        
        
         
          ∑
         
         
          
           i
          
          
           =
          
          
           0
          
         
         
          
           N
          
          
           −
          
          
           1
          
         
        
        
         
          u
         
         
          i
         
        
        
         
          v
         
         
          i
         
        
       
       
         \langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}=u_{0} v_{0}+u_{1} v_{1}+\cdots+u_{N-1} v_{N-1}=\sum_{i=0}^{N-1} u_{i} v_{i} 
       
      
     ⟨u,v⟩=uTv=u0v0+u1v1+⋯+uN−1vN−1=i=0∑N−1uivi
其中, u \boldsymbol{u} u和 v \boldsymbol{v} v是 N × 1 N \times 1 N×1列向量。
(2) 具有如下内积函数的复数域 C C C上的酉空间(unitary linear space) C N C^N CN:
     
      
       
        
         ⟨
        
        
         u
        
        
         ,
        
        
         v
        
        
         ⟩
        
        
         =
        
        
         
          u
         
         
          
           ∗
          
          
           
             
           
           
            T
           
          
         
        
        
         v
        
        
         =
        
        
         
          ∑
         
         
          
           i
          
          
           =
          
          
           0
          
         
         
          
           N
          
          
           −
          
          
           1
          
         
        
        
         
          u
         
         
          i
         
         
          ∗
         
        
        
         
          v
         
         
          i
         
        
        
         =
        
        
         <
        
        
         v
        
        
         ,
        
        
         u
        
        
         
          >
         
         
          ∗
         
        
       
       
         \langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{* \mathrm{~T}} \boldsymbol{v}=\sum_{i=0}^{N-1} u_{i}^{*} v_{i}=<\boldsymbol{v}, \boldsymbol{u}>^{*} 
       
      
     ⟨u,v⟩=u∗ Tv=i=0∑N−1ui∗vi=<v,u>∗
 (3) 内积空间
    
     
      
       
        C
       
       
        (
       
       
        [
       
       
        a
       
       
        ,
       
       
        b
       
       
        ]
       
       
        )
       
      
      
       C([a, b])
      
     
    C([a,b]), 其中向量是区间
    
     
      
       
        a
       
       
        ≤
       
       
        x
       
       
        ≤
       
       
        b
       
      
      
       a≤x≤b
      
     
    a≤x≤b上的连续函数, 内积函数是积分内积:
< f ( x ) , g ( x ) > = ∫ a b f ∗ ( x ) g ( x ) d x <f(x), g(x)>=\int_{a}^{b} f^{*}(x) g(x) \mathrm{d} x <f(x),g(x)>=∫abf∗(x)g(x)dx
向量
    
     
      
       
        z
       
      
      
       z
      
     
    z的范数或长度为:
 
     
      
       
        
         ∥
        
        
         z
        
        
         ∥
        
        
         =
        
        
         
          
           ⟨
          
          
           z
          
          
           ,
          
          
           z
          
          
           ⟩
          
         
        
       
       
         \|\boldsymbol{z}\|=\sqrt{\langle\boldsymbol{z}, \boldsymbol{z}\rangle} 
       
      
     ∥z∥=⟨z,z⟩
若 z z z的范数是1, 则称 z z z是归一化的。
两个非零向量z和w之间的夹角为:
 
     
      
       
        
         θ
        
        
         =
        
        
         arccos
        
        
         
        
        
         
          
           ⟨
          
          
           z
          
          
           ,
          
          
           w
          
          
           ⟩
          
         
         
          
           ∥
          
          
           z
          
          
           ∥
          
          
           ∥
          
          
           w
          
          
           ∥
          
         
        
       
       
         \theta=\arccos \frac{\left \langle\boldsymbol{z}, \boldsymbol{w} \right\rangle }{\|\boldsymbol{z}\|\|\boldsymbol{w}\|} 
       
      
     θ=arccos∥z∥∥w∥⟨z,w⟩
 若
    
     
      
       
        
         ⟨
        
        
         z
        
        
         ,
        
        
         w
        
        
         ⟩
        
       
       
        =
       
       
        0
       
      
      
       \left \langle\boldsymbol{z}, \boldsymbol{w}\right\rangle=0
      
     
    ⟨z,w⟩=0,则称
    
     
      
       
        z
       
      
      
       z
      
     
    z和
    
     
      
       
        w
       
      
      
       w
      
     
    w是正交的(orthogonal)。即当且仅当
 
     
      
       
        
         <
        
        
         
          w
         
         
          k
         
        
        
         ,
        
        
         
          w
         
         
          l
         
        
        
         >
        
        
         =
        
        
         0
        
        
         ,
        
        
        
         k
        
        
         ≠
        
        
         l
        
       
       
         <\boldsymbol{w}_{k}, \boldsymbol{w}_{l}>=0, \quad k \neq l 
       
      
     <wk,wl>=0,k=l
时, 非零向量
    
     
      
       
        
         w
        
        
         0
        
       
       
        ,
       
       
        
         w
        
        
         1
        
       
       
        ,
       
       
        
         w
        
        
         2
        
       
       
        ,
       
       
        ⋯
       
      
      
       w_{0}, w_{1}, w_{2}, \cdots
      
     
    w0,w1,w2,⋯是所张成内积空间的正交基。若基向量是归一化的,则它们是一个正交基,并且有
 
     
      
       
        
         
          ⟨
         
         
          
           w
          
          
           k
          
         
         
          ,
         
         
          
           w
          
          
           l
          
         
         
          ⟩
         
        
        
         =
        
        
         
          δ
         
         
          
           k
          
          
           l
          
         
        
        
         =
        
        
         
          {
         
         
          
           
            
             
              
               0
              
              
               ,
              
              
               k
              
              
               ≠
              
              
               l
              
             
            
           
          
          
           
            
             
              
               1
              
              
               ,
              
              
               k
              
              
               =
              
              
               l
              
             
            
           
          
         
        
       
       
         \left\langle\boldsymbol{w}_{k}, \boldsymbol{w}_{l}\right\rangle=\delta_{k l}=\left\{\begin{array}{l} 0, k \neq l \\ 1, k=l \end{array}\right. 
       
      
     ⟨wk,wl⟩=δkl={0,k=l1,k=l
 类似地, 若
 
     
      
       
        
         <
        
        
         
          
           w
          
          
           ~
          
         
         
          k
         
        
        
         ,
        
        
         
          w
         
         
          l
         
        
        
         >
        
        
         =
        
        
         0
        
        
         ,
        
        
         k
        
        
         ≠
        
        
         l
        
       
       
         <\tilde{\boldsymbol{w}}_{k}, \boldsymbol{w}_{l}>=0, k \neq l 
       
      
     <w~k,wl>=0,k=l
 则称向量集合
    
     
      
       
        
         w
        
        
         0
        
       
       
        ,
       
       
        
         w
        
        
         1
        
       
       
        ,
       
       
        
         w
        
        
         2
        
       
       
        ,
       
       
        ⋯
       
      
      
       \boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots
      
     
    w0,w1,w2,⋯和对偶向量补集
    
     
      
       
        
         
          w
         
         
          ~
         
        
        
         0
        
       
       
        ,
       
       
        
         
          w
         
         
          ~
         
        
        
         1
        
       
       
        ,
       
       
        
         
          w
         
         
          ~
         
        
        
         2
        
       
       
        ,
       
       
        ⋯
       
      
      
       \tilde{\boldsymbol{w}}_{0},\tilde{\boldsymbol{w}}_{1}, \tilde{\boldsymbol{w}}_{2}, \cdots
      
     
    w~0,w~1,w~2,⋯是双正交的,并且是所张成向量空间的一个双正交基。 当且仅当
     
      
       
        
         <
        
        
         
          
           w
          
          
           ~
          
         
         
          k
         
        
        
         ,
        
        
         
          w
         
         
          l
         
        
        
         >
        
        
         =
        
        
         
          δ
         
         
          
           k
          
          
           l
          
         
        
        
         =
        
        
         
          {
         
         
          
           
            
             
              
               0
              
              
               ,
              
              
               k
              
              
               ≠
              
              
               l
              
             
            
           
          
          
           
            
             
              
               1
              
              
               ,
              
              
               k
              
              
               =
              
              
               l
              
             
            
           
          
         
        
       
       
         <\tilde{\boldsymbol{w}}_{k}, \boldsymbol{w}_{l}>=\delta_{k l}=\left\{\begin{array}{l} 0, k \neq l \\ 1, k=l \end{array}\right. 
       
      
     <w~k,wl>=δkl={0,k=l1,k=l
 时, 它们才是双规范正交基。
令
    
     
      
       
        W
       
       
        =
       
       
        
         {
        
        
         
          w
         
         
          0
         
        
        
         ,
        
        
         
          w
         
         
          1
         
        
        
         ,
        
        
         
          w
         
         
          2
         
        
        
         ,
        
        
         ⋯
         
        
         }
        
       
      
      
       W=\left\{\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots\right\}
      
     
    W={w0,w1,w2,⋯}是内积空间
    
     
      
       
        V
       
      
      
       V
      
     
    V的一个正交基,并且令
    
     
      
       
        z
       
       
        ∈
       
       
        V
       
      
      
       z\in V
      
     
    z∈V,则向量
    
     
      
       
        z
       
      
      
       z
      
     
    z可 表示为基向量的线性组合:
 
     
      
       
        
         z
        
        
         =
        
        
         
          α
         
         
          0
         
        
        
         
          w
         
         
          0
         
        
        
         +
        
        
         
          α
         
         
          1
         
        
        
         
          w
         
         
          1
         
        
        
         +
        
        
         
          α
         
         
          2
         
        
        
         
          w
         
         
          2
         
        
        
         +
        
        
         ⋯
        
       
       
         \boldsymbol{z}=\alpha_{0} \boldsymbol{w}_{0}+\alpha_{1} \boldsymbol{w}_{1}+\alpha_{2} \boldsymbol{w}_{2}+\cdots 
       
      
     z=α0w0+α1w1+α2w2+⋯
计算得:
 
     
      
       
        
         
          α
         
         
          i
         
        
        
         =
        
        
         
          
           ⟨
          
          
           
            w
           
           
            i
           
          
          
           ,
          
          
           z
          
          
           ⟩
          
         
         
          
           ⟨
          
          
           
            w
           
           
            i
           
          
          
           ,
          
          
           
            w
           
           
            i
           
          
          
           ⟩
          
         
        
       
       
         \alpha_{i}=\frac{\left\langle\boldsymbol{w}_{i}, \boldsymbol{z}\right\rangle}{\left\langle\boldsymbol{w}_{i}, \boldsymbol{w}_{i}\right\rangle} 
       
      
     αi=⟨wi,wi⟩⟨wi,z⟩
 若基向量的范数为1, 则简化为:
    
     
      
       
        
         α
        
        
         i
        
       
       
        =
       
       
        <
       
       
        
         w
        
        
         i
        
       
       
        ,
       
       
        z
       
       
        >
       
      
      
       \alpha_{i}=<\boldsymbol{w}_{i}, \boldsymbol{z}>
      
     
    αi=<wi,z>
二、基于矩阵的变换
一维离散傅里叶变换是一类重要的变换, 这类变换可用如下通式表示:
 
     
      
       
        
         
         
          
           
            T
           
           
            (
           
           
            u
           
           
            )
           
           
            =
           
           
            
             ∑
            
            
             
              x
             
             
              =
             
             
              0
             
            
            
             
              N
             
             
              −
             
             
              1
             
            
           
           
            f
           
           
            (
           
           
            x
           
           
            )
           
           
            r
           
           
            (
           
           
            x
           
           
            ,
           
           
            u
           
           
            )
           
          
         
         
         
          
           (16)
          
         
        
       
       
         T(u)=\sum_{x=0}^{N-1} f(x) r(x, u)\tag{16} 
       
      
     T(u)=x=0∑N−1f(x)r(x,u)(16)
 其中, 
    
     
      
       
        x
       
      
      
       x
      
     
    x是空间变量;
    
     
      
       
        T
       
       
        (
       
       
        u
       
       
        )
       
      
      
       T(u)
      
     
    T(u)是
    
     
      
       
        f
       
       
        (
       
       
        x
       
       
        )
       
      
      
       f(x)
      
     
    f(x)的变换;
    
     
      
       
        r
       
       
        (
       
       
        x
       
       
        ,
       
       
        u
       
       
        )
       
      
      
       r(x,u)
      
     
    r(x,u)是正变换核;整数
    
     
      
       
        u
       
      
      
       u
      
     
    u是变换变量, 其值域为
    
     
      
       
        0
       
       
        ,
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        N
       
       
        −
       
       
        1
       
      
      
       0,1,2,\cdots,N-1
      
     
    0,1,2,⋯,N−1。
    
     
      
       
        T
       
       
        (
       
       
        u
       
       
        )
       
      
      
       T(u)
      
     
    T(u)的反变换:
 
     
      
       
        
         
         
          
           
            f
           
           
            (
           
           
            x
           
           
            )
           
           
            =
           
           
            
             ∑
            
            
             
              u
             
             
              =
             
             
              0
             
            
            
             
              N
             
             
              −
             
             
              1
             
            
           
           
            T
           
           
            (
           
           
            u
           
           
            )
           
           
            s
           
           
            (
           
           
            x
           
           
            ,
           
           
            u
           
           
            )
           
          
         
         
         
          
           (17)
          
         
        
       
       
         f(x)=\sum_{u=0}^{N-1} T(u)s(x,u)\tag{17} 
       
      
     f(x)=u=0∑N−1T(u)s(x,u)(17)
 其中, 
    
     
      
       
        s
       
       
        (
       
       
        x
       
       
        ,
       
       
        u
       
       
        )
       
      
      
       s(x,u)
      
     
    s(x,u)是反变换核, x的值域为
    
     
      
       
        0
       
       
        ,
       
       
        1
       
       
        ,
       
       
        2
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        N
       
       
        −
       
       
        1
       
      
      
       0,1,2,\cdots,N-1
      
     
    0,1,2,⋯,N−1。
    
     
      
       
        f
       
       
        (
       
       
        x
       
       
        )
       
      
      
       f(x)
      
     
    f(x)是N个反变换核的加权和, 
    
     
      
       
        T
       
       
        (
       
       
        u
       
       
        )
       
      
      
       T(u)
      
     
    T(u)是权重。
 展开式
    
     
      
       
        (
       
       
        17
       
       
        )
       
      
      
       (17)
      
     
    (17)右侧得到:
 
     
      
       
        
         
         
          
           
            f
           
           
            (
           
           
            x
           
           
            )
           
           
            =
           
           
            T
           
           
            (
           
           
            0
           
           
            )
           
           
            s
           
           
            (
           
           
            x
           
           
            ,
           
           
            0
           
           
            )
           
           
            +
           
           
            T
           
           
            (
           
           
            1
           
           
            )
           
           
            s
           
           
            (
           
           
            x
           
           
            ,
           
           
            1
           
           
            )
           
           
            +
           
           
            ⋯
           
           
            +
           
           
            T
           
           
            (
           
           
            N
           
           
            −
           
           
            1
           
           
            )
           
           
            s
           
           
            (
           
           
            x
           
           
            ,
           
           
            N
           
           
            −
           
           
            1
           
           
            )
           
          
         
         
         
          
           (18)
          
         
        
       
       
         f(x)=T(0) s(x, 0)+T(1) s(x, 1)+\cdots+T(N-1) s(x, N-1)\tag{18} 
       
      
     f(x)=T(0)s(x,0)+T(1)s(x,1)+⋯+T(N−1)s(x,N−1)(18)
 
 假设式
    
     
      
       
        (
       
       
        17
       
       
        )
       
      
      
       (17)
      
     
    (17)中的s(x, u)是内积空间的正交基向量,且基向量的范数为1,则:
 
     
      
       
        
         
         
          
           
            T
           
           
            (
           
           
            u
           
           
            )
           
           
            =
           
           
            
             ⟨
            
            
             s
            
            
             (
            
            
             x
            
            
             ,
            
            
             u
            
            
             )
            
            
             ,
            
            
             f
            
            
             (
            
            
             x
            
            
             )
            
            
             ⟩
            
           
          
         
         
         
          
           (19)
          
         
        
       
       
         T(u)=\left \langle s(x,u),f(x) \right \rangle \tag{19} 
       
      
     T(u)=⟨s(x,u),f(x)⟩(19)
即变换的每个元素 T ( u ) T(u) T(u), 可通过内积来计算。
现在准备利用矩阵来表达式
    
     
      
       
        (
       
       
        16
       
       
        )
       
      
      
       (16)
      
     
    (16)和式
    
     
      
       
        (
       
       
        17
       
       
        )
       
      
      
       (17)
      
     
    (17)。首先将函数
    
     
      
       
        f
       
       
        (
       
       
        x
       
       
        )
       
      
      
       f(x)
      
     
    f(x),
    
     
      
       
        T
       
       
        (
       
       
        u
       
       
        )
       
      
      
       T(u)
      
     
    T(u)和
    
     
      
       
        s
       
       
        (
       
       
        x
       
       
        ,
       
       
        u
       
       
        )
       
      
      
       s(x, u)
      
     
    s(x,u)定义为列向量:
 
     
      
       
        
         
         
          
           
            f
           
           
            =
           
           
            
             
              [
             
             
              
               
                
                 
                  
                   f
                  
                  
                   (
                  
                  
                   0
                  
                  
                   )
                  
                 
                
               
               
                
                 
                  
                   f
                  
                  
                   (
                  
                  
                   1
                  
                  
                   )
                  
                  
                   ⋯
                  
                  
                   f
                  
                  
                   (
                  
                  
                   N
                  
                  
                   −
                  
                  
                   1
                  
                  
                   )
                  
                 
                
               
              
             
             
              ]
             
            
            
             T
            
           
           
            =
           
           
            
             
              [
             
             
              
               
                
                 
                  
                   f
                  
                  
                   0
                  
                 
                
               
               
                
                 
                  
                   
                    f
                   
                   
                    1
                   
                  
                  
                   ⋯
                  
                 
                
               
               
                
                 
                  
                   f
                  
                  
                   
                    N
                   
                   
                    −
                   
                   
                    1
                   
                  
                 
                
               
              
             
             
              ]
             
            
            
             T
            
           
          
         
         
         
          
           (20)
          
         
        
       
       
         \boldsymbol{f}=\left[\begin{array}{lll} f(0) & f(1) \cdots f(N-1) \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll} f_{0} & f_{1} \cdots & f_{N-1} \end{array}\right]^{\mathrm{T}}\tag{20} 
       
      
     f=[f(0)f(1)⋯f(N−1)]T=[f0f1⋯fN−1]T(20)
 
     
      
       
        
         
         
          
           
            t
           
           
            =
           
           
            
             
              [
             
             
              
               
                
                 
                  
                   T
                  
                  
                   (
                  
                  
                   0
                  
                  
                   )
                  
                 
                
               
               
                
                 
                  
                   T
                  
                  
                   (
                  
                  
                   1
                  
                  
                   )
                  
                  
                   ⋯
                  
                  
                   T
                  
                  
                   (
                  
                  
                   N
                  
                  
                   −
                  
                  
                   1
                  
                  
                   )
                  
                 
                
               
              
             
             
              ]
             
            
            
             T
            
           
           
            =
           
           
            
             
              [
             
             
              
               
                
                 
                  
                   t
                  
                  
                   0
                  
                 
                
               
               
                
                 
                  
                   
                    t
                   
                   
                    1
                   
                  
                  
                   ⋯
                  
                 
                
               
               
                
                 
                  
                   t
                  
                  
                   
                    N
                   
                   
                    −
                   
                   
                    1
                   
                  
                 
                
               
              
             
             
              ]
             
            
            
             T
            
           
          
         
         
         
          
           (21)
          
         
        
       
       
         \boldsymbol{t}=\left[\begin{array}{lll} T(0) & T(1) \cdots T(N-1) \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll} t_{0} & t_{1} \cdots & t_{N-1} \end{array}\right]^{\mathrm{T}}\tag{21} 
       
      
     t=[T(0)T(1)⋯T(N−1)]T=[t0t1⋯tN−1]T(21)
s u = [ s ( 0 , u ) s ( 1 , u ) ⋯ s ( N − 1 , u ) ] T = [ s u , 0 s u , 1 ⋯ s u , N − 1 ] T s_{u}=[s(0, u)\quad s(1, u) \cdots s(N-1, u)]^{\mathrm{T}}=\left[s_{u, 0}\quad s_{u, 1} \cdots s_{u, N-1}\right]^{\mathrm{T}}\ su=[s(0,u)s(1,u)⋯s(N−1,u)]T=[su,0su,1⋯su,N−1]T
其中,
    
     
      
       
        u
       
       
        =
       
       
        0
       
       
        ,
       
       
        1
       
       
        ,
       
       
        ⋯
        
       
        ,
       
       
        N
       
       
        −
       
       
        1
       
      
      
       u=0,1, \cdots, N-1
      
     
    u=0,1,⋯,N−1
 利用这些列向量, 重写式
    
     
      
       
        (
       
       
        19
       
       
        )
       
      
      
       (19)
      
     
    (19), 得:
 
     
      
       
        
         
         
          
           
            T
           
           
            (
           
           
            u
           
           
            )
           
           
            =
           
           
            <
           
           
            
             s
            
            
             u
            
           
           
            ,
           
           
            f
           
           
            >
           
           
            ,
           
           
           
            u
           
           
            =
           
           
            0
           
           
            ,
           
           
            1
           
           
            ,
           
           
            ⋯
            
           
            ,
           
           
            N
           
           
            −
           
           
            1
           
          
         
         
         
          
           (23)
          
         
        
       
       
         T(u)=<s_{u}, f>, \quad u=0,1, \cdots, N-1\tag{23} 
       
      
     T(u)=<su,f>,u=0,1,⋯,N−1(23)
A = [ s 0 T s 1 T ⋮ s N − 1 T ] = [ s 0 s 1 … s N − 1 ] T (24) \mathbf{A}=\left[\begin{array}{c} \mathbf{s}_{0}^{T} \\ \mathbf{s}_{1}^{T} \\ \vdots \\ \mathbf{s}_{N-1}^{T} \end{array}\right]=\left[\begin{array}{llll} \mathbf{s}_{0} & \mathbf{s}_{1} & \ldots & \mathbf{s}_{N-1} \end{array}\right]^{T}\tag{24} A= s0Ts1T⋮sN−1T =[s0s1…sN−1]T(24)
然后将式
    
     
      
       
        (
       
       
        23
       
       
        )
       
      
      
       (23)
      
     
    (23)代入式
    
     
      
       
        (
       
       
        21
       
       
        )
       
      
      
       (21)
      
     
    (21), 并利用式
    
     
      
       
        (
       
       
        1
       
       
        )
       
      
      
       (1)
      
     
    (1), 得
 
     
      
       
        
         
         
          
           
            
             
              
               
                
                 A
                
                
                 A
                
               
               
                T
               
              
             
            
            
             
              
               
               
                =
               
               
                
                 [
                
                
                 
                  
                   
                    
                     
                      s
                     
                     
                      0
                     
                     
                      T
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      s
                     
                     
                      1
                     
                     
                      T
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      s
                     
                     
                      
                       N
                      
                      
                       −
                      
                      
                       1
                      
                     
                     
                      T
                     
                    
                   
                  
                 
                
                
                 ]
                
               
               
                
                 [
                
                
                 
                  
                   
                    
                     
                      s
                     
                     
                      0
                     
                    
                   
                  
                  
                   
                    
                     
                      s
                     
                     
                      1
                     
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                     
                      s
                     
                     
                      
                       N
                      
                      
                       −
                      
                      
                       1
                      
                     
                    
                   
                  
                 
                
                
                 ]
                
               
              
             
            
           
           
            
             
              
             
            
            
             
              
               
               
                =
               
               
                
                 [
                
                
                 
                  
                   
                    
                     
                      
                       s
                      
                      
                       0
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                    
                   
                  
                  
                   
                    
                     
                      
                       s
                      
                      
                       0
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       1
                      
                     
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                     
                      
                       s
                      
                      
                       0
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      
                       s
                      
                      
                       1
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                    
                   
                  
                  
                   
                    
                     
                      
                       s
                      
                      
                       1
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       1
                      
                     
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     ⋱
                    
                   
                  
                  
                   
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                      
                       T
                      
                     
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                     
                    
                   
                  
                 
                
                
                 ]
                
               
              
             
            
           
           
            
             
              
             
            
            
             
              
               
               
                =
               
               
                
                 [
                
                
                 
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       1
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       1
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       1
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       1
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     ⋱
                    
                   
                  
                  
                   
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       0
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     
                      ⟨
                     
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                     
                     
                      ,
                     
                     
                      
                       s
                      
                      
                       
                        N
                       
                       
                        −
                       
                       
                        1
                       
                      
                     
                     
                      ⟩
                     
                    
                   
                  
                 
                
                
                 ]
                
               
              
             
            
           
           
            
             
              
             
            
            
             
              
               
               
                =
               
               
                
                 [
                
                
                 
                  
                   
                    
                     1
                    
                   
                  
                  
                   
                    
                     0
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                     0
                    
                   
                  
                 
                 
                  
                   
                    
                     0
                    
                   
                  
                  
                   
                    
                     1
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      ⋮
                     
                     
                      
                     
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     ⋱
                    
                   
                  
                  
                   
                    
                   
                  
                 
                 
                  
                   
                    
                     0
                    
                   
                  
                  
                   
                    
                     …
                    
                   
                  
                  
                   
                    
                   
                  
                  
                   
                    
                     1
                    
                   
                  
                 
                
                
                 ]
                
               
               
                =
               
               
                I
               
              
             
            
           
          
         
         
         
          
           (27)
          
         
        
       
       
         \begin{aligned} \mathbf{A A}^{T} & =\left[\begin{array}{c} \mathbf{s}_{0}^{T} \\ \mathbf{s}_{1}^{T} \\ \vdots \\ \mathbf{s}_{N-1}^{T} \end{array}\right]\left[\begin{array}{llll} \mathbf{s}_{0} & \mathbf{s}_{1} & \ldots & \mathbf{s}_{N-1} \end{array}\right] \\ & =\left[\begin{array}{cccc} \mathbf{s}_{0}^{T} \mathbf{s}_{0} & \mathbf{s}_{0}^{T} \mathbf{s}_{1} & \ldots & \mathbf{s}_{0}^{T} \mathbf{s}_{N-1} \\ \mathbf{s}_{1}^{T} \mathbf{s}_{0} & \mathbf{s}_{1}^{T} \mathbf{s}_{1} & & \vdots \\ \vdots & & \ddots & \\ \mathbf{s}_{N-1}^{T} \mathbf{s}_{0} & \ldots & & \mathbf{s}_{N-1}^{T} \mathbf{s}_{N-1} \end{array}\right] \\ & =\left[\begin{array}{cccc} \left\langle\mathbf{s}_{0}, \mathbf{s}_{0}\right\rangle & \left\langle\mathbf{s}_{0}, \mathbf{s}_{1}\right\rangle & \ldots & \left\langle\mathbf{s}_{0}, \mathbf{s}_{N-1}\right\rangle \\ \left\langle\mathbf{s}_{1}, \mathbf{s}_{0}\right\rangle & \left\langle\mathbf{s}_{1}, \mathbf{s}_{1}\right\rangle & & \vdots \\ \vdots & & \ddots & \\ \left\langle\mathbf{s}_{N-1}, \mathbf{s}_{0}\right\rangle & \ldots & & \left\langle\mathbf{s}_{N-1}, \mathbf{s}_{N-1}\right\rangle \end{array}\right] \\ & =\left[\begin{array}{cccc} 1 & 0 & \ldots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & \\ 0 & \ldots & & 1 \end{array}\right]=\mathbf{I} \end{aligned}\tag{27} 
       
      
     AAT=
                      s0Ts1T⋮sN−1T
                      [s0s1…sN−1]=
                      s0Ts0s1Ts0⋮sN−1Ts0s0Ts1s1Ts1……⋱s0TsN−1⋮sN−1TsN−1
                      =
                      ⟨s0,s0⟩⟨s1,s0⟩⋮⟨sN−1,s0⟩⟨s0,s1⟩⟨s1,s1⟩……⋱⟨s0,sN−1⟩⋮⟨sN−1,sN−1⟩
                      =
                      10⋮001……⋱0⋮1
                      =I(27)
或
 
     
      
       
        
         
         
          
           
            t
           
           
            =
           
           
            A
           
           
            f
           
          
         
         
         
          
           (26)
          
         
        
       
       
         t=Af\tag{26} 
       
      
     t=Af(26)
 对于一维信号, 利用矩阵表达式
    
     
      
       
        (
       
       
        16
       
       
        )
       
      
      
       (16)
      
     
    (16)和式
    
     
      
       
        (
       
       
        17
       
       
        )
       
      
      
       (17)
      
     
    (17)为
 
     
      
       
        
         
         
          
           
            t
           
           
            =
           
           
            A
           
           
            f
           
          
         
         
         
          
           (28)
          
         
        
       
       
         t=Af \tag{28} 
       
      
     t=Af(28)
 
     
      
       
        
         
         
          
           
            f
           
           
            =
           
           
            
             A
            
            
             T
            
           
           
            t
           
          
         
         
         
          
           (29)
          
         
        
       
       
         f=A^Tt\tag{29} 
       
      
     f=ATt(29)
 式
    
     
      
       
        (
       
       
        28
       
       
        )
       
      
      
       (28)
      
     
    (28)和式
    
     
      
       
        (
       
       
        29
       
       
        )
       
      
      
       (29)
      
     
    (29)是可逆变换对。
本节中给出的大部分概念, 可推广到形如下式的连续展开:
 
     
      
       
        
         
         
          
           
            f
           
           
            (
           
           
            x
           
           
            )
           
           
            =
           
           
            
             ∑
            
            
             
              u
             
             
              =
             
             
              −
             
             
              ∞
             
            
            
             
              +
             
             
              ∞
             
            
           
           
            
             α
            
            
             u
            
           
           
            
             s
            
            
             u
            
           
           
            (
           
           
            x
           
           
            )
           
          
         
         
         
          
           (51)
          
         
        
       
       
         f(x)=\sum_{u=-\infty}^{+\infty} \alpha_{u} s_{u}(x)\tag{51} 
       
      
     f(x)=u=−∞∑+∞αusu(x)(51)
 其中, 
    
     
      
       
        
         α
        
        
         u
        
       
      
      
       \alpha_{u}
      
     
    αu和
    
     
      
       
        
         s
        
        
         u
        
       
      
      
       s_{u}
      
     
    su,
    
     
      
       
        u
       
       
        =
       
       
        0
       
       
        ,
       
       
        ±
       
       
        1
       
       
        ,
       
       
        ±
       
       
        2
       
       
        ,
       
       
        ±
       
       
        3
       
       
        ,
       
       
        ⋯
       
      
      
       u=0, \pm 1, \pm 2, \pm 3, \cdots
      
     
    u=0,±1,±2,±3,⋯分别表示内积空间
    
     
      
       
        C
       
       
        (
       
       
        [
       
       
        a
       
       
        ,
       
       
        b
       
       
        ]
       
       
        )
       
      
      
       C([a, b])
      
     
    C([a,b])的展开系数和基向量。
若
    
     
      
       
        
         s
        
        
         u
        
       
      
      
       s_{u}
      
     
    su,
    
     
      
       
        u
       
       
        =
       
       
        0
       
       
        ,
       
       
        ±
       
       
        1
       
       
        ,
       
       
        ±
       
       
        2
       
       
        ,
       
       
        ±
       
       
        3
       
       
        ,
       
       
        ⋯
       
      
      
       u=0, \pm 1, \pm 2, \pm 3, \cdots
      
     
    u=0,±1,±2,±3,⋯是
    
     
      
       
        C
       
       
        (
       
       
        [
       
       
        a
       
       
        ,
       
       
        b
       
       
        ]
       
       
        )
       
      
      
       C([a, b])
      
     
    C([a,b])的正交基向量, 则展开系数:
 
     
      
       
        
         
         
          
           
            
             α
            
            
             u
            
           
           
            =
           
           
            
             ⟨
            
            
             
              s
             
             
              u
             
            
            
             (
            
            
             x
            
            
             )
            
            
             ,
            
            
             f
            
            
             (
            
            
             x
            
            
             )
            
            
             ⟩
            
           
          
         
         
         
          
           (52)
          
         
        
       
       
         \alpha_{u}=\left \langle s_{u}(x), f(x) \right \rangle\tag{52} 
       
      
     αu=⟨su(x),f(x)⟩(52)
三、相关
本节介绍这些系数与相关之间的关系。


















