C# Onnx yolov8 pig detection

目录
效果
项目
模型
代码
数据集
下载
效果

项目

模型
Model Properties
 -------------------------
 date:2024-04-28T15:13:10.750689
 description:Ultralytics YOLOv8n model trained on C:\Work\yolov8\datasets\pig_detection\data.yaml
 author:Ultralytics
 version:8.1.29
 task:detect
 license:AGPL-3.0 License (https://ultralytics.com/license)
 docs:https://docs.ultralytics.com
 stride:32
 batch:1
 imgsz:[640, 640]
 names:{0: 'Pig', 1: 'Pig Lying'}
 ---------------------------------------------------------------
Inputs
 -------------------------
 name:images
 tensor:Float[1, 3, 640, 640]
 ---------------------------------------------------------------
Outputs
 -------------------------
 name:output0
 tensor:Float[1, 6, 8400]
 ---------------------------------------------------------------
代码
using Microsoft.ML.OnnxRuntime;
 using Microsoft.ML.OnnxRuntime.Tensors;
 using OpenCvSharp;
 using System;
 using System.Collections.Generic;
 using System.Drawing;
 using System.Drawing.Imaging;
 using System.Linq;
 using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
 {
     public partial class Form1 : Form
     {
         public Form1()
         {
             InitializeComponent();
         }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
         string image_path = "";
         string startupPath;
         string classer_path;
         DateTime dt1 = DateTime.Now;
         DateTime dt2 = DateTime.Now;
         string model_path;
         Mat image;
         DetectionResult result_pro;
         Mat result_image;
         Result result;
        SessionOptions options;
         InferenceSession onnx_session;
         Tensor<float> input_tensor;
         List<NamedOnnxValue> input_container;
         IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
         DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
        private void button1_Click(object sender, EventArgs e)
         {
             OpenFileDialog ofd = new OpenFileDialog();
             ofd.Filter = fileFilter;
             if (ofd.ShowDialog() != DialogResult.OK) return;
             pictureBox1.Image = null;
             image_path = ofd.FileName;
             pictureBox1.Image = new Bitmap(image_path);
             textBox1.Text = "";
             image = new Mat(image_path);
             pictureBox2.Image = null;
         }
        private void button2_Click(object sender, EventArgs e)
         {
             if (image_path == "")
             {
                 return;
             }
            button2.Enabled = false;
             pictureBox2.Image = null;
             textBox1.Text = "";
            //图片缩放
             image = new Mat(image_path);
             int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
             Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
             Rect roi = new Rect(0, 0, image.Cols, image.Rows);
             image.CopyTo(new Mat(max_image, roi));
            float[] result_array = new float[8400 * 84];
             float[] factors = new float[2];
             factors[0] = factors[1] = (float)(max_image_length / 640.0);
            // 将图片转为RGB通道
             Mat image_rgb = new Mat();
             Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
             Mat resize_image = new Mat();
             Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
            // 输入Tensor
             for (int y = 0; y < resize_image.Height; y++)
             {
                 for (int x = 0; x < resize_image.Width; x++)
                 {
                     input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                     input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                     input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                 }
             }
            //将 input_tensor 放入一个输入参数的容器,并指定名称
             input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
            dt1 = DateTime.Now;
             //运行 Inference 并获取结果
             result_infer = onnx_session.Run(input_container);
             dt2 = DateTime.Now;
            // 将输出结果转为DisposableNamedOnnxValue数组
             results_onnxvalue = result_infer.ToArray();
            // 读取第一个节点输出并转为Tensor数据
             result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
            resize_image.Dispose();
             image_rgb.Dispose();
            result_pro = new DetectionResult(classer_path, factors);
             result = result_pro.process_result(result_array);
             result_image = result_pro.draw_result(result, image.Clone());
            if (!result_image.Empty())
             {
                 pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                 textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
             }
             else
             {
                 textBox1.Text = "无信息";
             }
            button2.Enabled = true;
         }
        private void Form1_Load(object sender, EventArgs e)
         {
             startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/pig_detection_8n.onnx";
             classer_path = "model/lable.txt";
            // 创建输出会话,用于输出模型读取信息
             options = new SessionOptions();
             options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
             options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
             onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            // 输入Tensor
             input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
             // 创建输入容器
             input_container = new List<NamedOnnxValue>();
            image_path = "test_img/1.jpg";
             pictureBox1.Image = new Bitmap(image_path);
             image = new Mat(image_path);
}
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox1.Image);
         }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox2.Image);
         }
        SaveFileDialog sdf = new SaveFileDialog();
         private void button3_Click(object sender, EventArgs e)
         {
             if (pictureBox2.Image == null)
             {
                 return;
             }
             Bitmap output = new Bitmap(pictureBox2.Image);
             sdf.Title = "保存";
             sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
             if (sdf.ShowDialog() == DialogResult.OK)
             {
                 switch (sdf.FilterIndex)
                 {
                     case 1:
                         {
                             output.Save(sdf.FileName, ImageFormat.Jpeg);
                             break;
                         }
                     case 2:
                         {
                             output.Save(sdf.FileName, ImageFormat.Png);
                             break;
                         }
                     case 3:
                         {
                             output.Save(sdf.FileName, ImageFormat.Bmp);
                             break;
                         }
                     case 4:
                         {
                             output.Save(sdf.FileName, ImageFormat.Emf);
                             break;
                         }
                     case 5:
                         {
                             output.Save(sdf.FileName, ImageFormat.Exif);
                             break;
                         }
                     case 6:
                         {
                             output.Save(sdf.FileName, ImageFormat.Gif);
                             break;
                         }
                     case 7:
                         {
                             output.Save(sdf.FileName, ImageFormat.Icon);
                             break;
                         }
                    case 8:
                         {
                             output.Save(sdf.FileName, ImageFormat.Tiff);
                             break;
                         }
                     case 9:
                         {
                             output.Save(sdf.FileName, ImageFormat.Wmf);
                             break;
                         }
                 }
                 MessageBox.Show("保存成功,位置:" + sdf.FileName);
             }
         }
     }
 }
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;
        Result result;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));
            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);
            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;
            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();
            result_array = result_tensors.ToArray();
            resize_image.Dispose();
            image_rgb.Dispose();
            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            result_image = result_pro.draw_result(result, image.Clone());
            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }
            button2.Enabled = true;
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/pig_detection_8n.onnx";
            classer_path = "model/lable.txt";
            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }
                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
} 
数据集

下载
源码下载
带标签数据集下载



















