目录
一、基本类型原子类
二、数组类型原子类
三、引用类型原子类
四、对象的属性修改类型原子类
五、原子操作增强类
5.1、高性能热点商品应用
5.2、LongAdder架构图
5.3、源码分析
一、基本类型原子类
public class AtomicTest1 {
    public static final int SIZE = 50;
    public static void main(String[] args) throws InterruptedException {
        MyAtomic myAtomic = new MyAtomic();
        CountDownLatch countDownLatch = new CountDownLatch(SIZE);
        for (int i = 1; i <= SIZE ; i++) {
            new Thread(()->{
                try {
                    for (int j = 1; j <= 1000 ; j++) {
                        myAtomic.add();
                    }
                } finally {
                    countDownLatch.countDown();
                }
            },String.valueOf(i)).start();
        }
        //等待五十个线程全部计算完,获取结果
        countDownLatch.await();
        System.out.println("计算结果为:"+myAtomic.atomicInteger.get());
    }
}
class MyAtomic{
    AtomicInteger atomicInteger = new AtomicInteger();
    public void add(){
        atomicInteger.getAndIncrement();
    }
}二、数组类型原子类
public class AtomicTest2 {
    public static void main(String[] args) {
        AtomicIntegerArray array = new AtomicIntegerArray(new int[]{1, 2, 3, 4});
        for (int i = 0; i <array.length() ; i++) {
            System.out.println(array.get(i));
        }
    }
}
三、引用类型原子类
public class AtomicTest3 {
    static AtomicMarkableReference markableReference = new AtomicMarkableReference(100,false);
    public static void main(String[] args) {
      new Thread(()->{
          boolean marked = markableReference.isMarked();
          System.out.println(Thread.currentThread().getName() + "\t" + marked);
          try {
              TimeUnit.MILLISECONDS.sleep(500);
          } catch (InterruptedException e) {
              e.printStackTrace();
          }
          markableReference.weakCompareAndSet(100, 101, marked, !marked);
      },"A").start();
        new Thread(()->{
            boolean marked = markableReference.isMarked();
            System.out.println(Thread.currentThread().getName() + "\t" + marked);
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            boolean b = markableReference.weakCompareAndSet(100, 102, marked, !marked);
            System.out.println(b+"\t"+Thread.currentThread().getName());
            System.out.println(Thread.currentThread().getName()+"\t"+markableReference.isMarked());
            System.out.println(Thread.currentThread().getName()+"\t"+markableReference.getReference());
        },"B").start();
    }
}四、对象的属性修改类型原子类
1、使用目的:以一种线程安全的方式操作非线程安全对象内的某些字段
2、使用对象:①、更新对象属性必须使用public volatile修饰符。②、因为对象的属性修改类型原子类都是抽象类,所以每次使用都必须使用静态方法newUpdater()创建一个更新器,并且需要设置想要更新的类和属性。
public class AtomicTest4 {
    public static void main(String[] args) throws InterruptedException {
        Bank bank = new Bank();
        CountDownLatch countDownLatch = new CountDownLatch(10);
        for (int i = 1; i <=10 ; i++) {
            new Thread(()->{
                try {
                    for (int j = 1; j <=1000 ; j++) {
                        bank.add(bank);
                    }
                } finally {
                  countDownLatch.countDown();
                }
            },String.valueOf(i)).start();
        }
        countDownLatch.await();
        System.out.println(Thread.currentThread().getName() +"\t"+ bank.money);
    }
}
class Bank{
    String bankName = "NTM";
    public volatile int money = 0;
    AtomicIntegerFieldUpdater fieldUpdater = AtomicIntegerFieldUpdater.newUpdater(Bank.class,"money");
    public void add(Bank bank){
        fieldUpdater.getAndIncrement(bank);
    }
}五、原子操作增强类
public class volatiles1 {
    public static void main(String[] args) {
        LongAdder longAdder = new LongAdder();
        longAdder.increment();
        longAdder.increment();
        longAdder.increment();
        System.out.println(longAdder.sum());//4
        LongAccumulator longAccumulator = new LongAccumulator((x,y) -> x + y,0);
        longAccumulator.accumulate(1);//1
        longAccumulator.accumulate(3);//4
        System.out.println(longAccumulator.get());
    }
}
LongAdder只能用来计算加法,且从零开始计算
LongAccumulato提供了自定义的函数操作。
5.1、高性能热点商品应用
public class volatiles2 {
    public static final int threadNum = 50;
    public static final int W = 10000;
    public static void main(String[] args) throws InterruptedException {
        long startTime;
        long endTime;
        Num num = new Num();
        CountDownLatch countDownLatch1 = new CountDownLatch(threadNum);
        CountDownLatch countDownLatch2 = new CountDownLatch(threadNum);
        CountDownLatch countDownLatch3 = new CountDownLatch(threadNum);
        CountDownLatch countDownLatch4 = new CountDownLatch(threadNum);
        startTime = System.currentTimeMillis();
        for (int i = 1; i <=threadNum ; i++) {
           new Thread(()->{
               try {
                   for (int j = 1; j <= 100 * W ; j++) {
                       num.getSynchronizedSum();
                   }
               } finally {
                  countDownLatch1.countDown();
               }
           },String.valueOf(i)).start();
        }
        countDownLatch1.await();
        endTime = System.currentTimeMillis();
        System.out.println("共花费:" + (endTime - startTime) + "毫秒\t" + num.num);
        startTime = System.currentTimeMillis();
        for (int i = 1; i <=threadNum ; i++) {
            new Thread(()->{
                try {
                    for (int j = 1; j <= 100 * W ; j++) {
                        num.getAtomicLongSum();
                    }
                } finally {
                    countDownLatch2.countDown();
                }
            },String.valueOf(i)).start();
        }
        countDownLatch2.await();
        endTime = System.currentTimeMillis();
        System.out.println("共花费:" + (endTime - startTime) + "毫秒\t" + num.getAtomicLong());
        startTime = System.currentTimeMillis();
        for (int i = 1; i <=threadNum ; i++) {
            new Thread(()->{
                try {
                    for (int j = 1; j <= 100 * W ; j++) {
                        num.getLongAdderSum();
                    }
                } finally {
                    countDownLatch3.countDown();
                }
            },String.valueOf(i)).start();
        }
        countDownLatch3.await();
        endTime = System.currentTimeMillis();
        System.out.println("共花费:" + (endTime - startTime) + "毫秒\t" + num.getLongAdder());
        startTime = System.currentTimeMillis();
        for (int i = 1; i <=threadNum ; i++) {
            new Thread(()->{
                try {
                    for (int j = 1; j <= 100 * W ; j++) {
                        num.getLongAccumulatorSum();
                    }
                } finally {
                    countDownLatch4.countDown();
                }
            },String.valueOf(i)).start();
        }
        countDownLatch4.await();
        endTime = System.currentTimeMillis();
        System.out.println("共花费:" + (endTime - startTime) + "毫秒\t" + num.getLongAccumulator());
    }
}
class Num{
    int num = 0;
    public synchronized void getSynchronizedSum(){
        num++;
    }
    AtomicLong atomicLong = new AtomicLong(0);
    public void getAtomicLongSum(){
        atomicLong.getAndIncrement();
    }
    public long getAtomicLong(){
       return atomicLong.get();
    }
    LongAdder longAdder = new LongAdder();
    public void getLongAdderSum(){
        longAdder.increment();
    }
    public long getLongAdder(){
       return longAdder.sum();
    }
    LongAccumulator longAccumulator = new LongAccumulator((x,y)->x+y,0);
    public void getLongAccumulatorSum(){
        longAccumulator.accumulate(1);
    }
    public long getLongAccumulator(){
        return longAccumulator.get();
    }
}
5.2、LongAdder架构图
原理:Striped64中一些变量及方法
base:类似于AtomicLong中全局的value值。在没有竞争情况下数据直接累加到base上,或者calls扩容时,也需要将数据写入到base上
collide:表示扩容意向,false一定不会扩容,true可能会扩容。
cellsBusy:初始化cells或者扩容cells需要获取锁,0表示无锁状态,1:表示其他线程已经持有了锁。
casCellsBusy():通过CAS操作修改cellsBusy的值,CAS成功代表获取锁,返回true
NCPU:当前计算机CPU数量,Cell数组扩容时会使用到
getProbe();获取当前线程的hash值
advanceProbe():重置当前线程的hash值。
LongAdder的基本思路就是分散热点,将value值分散到到一个Call数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。如果要获取真正的long值,只要将各个槽中的变量值累加返回。
sum()会将所有Cell数组中的value和base累加作为返回值,核心的思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降低更新热点。
5.3、源码分析

as:表示cells引用
b:表示获取的base值
v:表示cells数组的长度
m:表示cells数组的长度
a:表示当前线程命中的cell单元格
 public void add(long x) {
        Cell[] as; long b, v; int m; Cell a;
        //首次首线程(as = cells != null)一定是false,此时走casBase方法,以CAS的方式更新base值, 
         且只有当cas失败时,才会走到if中
        //条件1:cells不为空
        //条件2:cas操作base失败,说明其它线程先一步修改了base正在出现竞争
        if ((as = cells) != null || !casBase(b = base, b + x)) {
            //true无竞争  false表示竞争激烈,多个线程hash到同一个cell,可能要扩容
            boolean uncontended = true;
            //条件1:cells为空
            //条件2:应该不会出现
            //条件3:当前线程所在的cell为空,说明当前线程还没有更新过cell,应该初始化一个cell
            //条件4:更新当前线程所在的cell失败,说明现在竞争很激烈,多个线程hash到了同一个cell,                    
              应扩容
            if (as == null || (m = as.length - 1) < 0 ||
               //getProbe()方法返回线程的threadlocalRandomProbe字段
               //它是通过随机数生成的一个值,对于一个确定的线程这个值是固定的
                (a = as[getProbe() & m]) == null ||
                !(uncontended = a.cas(v = a.value, v + x)))
                longAccumulate(x, null, uncontended);//调用Striped64中的方法处理。
        }
    }1、最初无竞争时只更新base
2、如果更新base失败后,首次新建一个Cell[]数组
3、当多个线程竞争同一个Cell比较激烈时,可能就要对Cell[]扩容。
longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended)x:需要增加的值,一般默认都是1
fn:默认传递的是null
wasUncontended:竞争标识,如果是false则代表有竞争,只有cells初始化之后,并且当前线程CAS竞争修改失败,才会是false
    final void longAccumulate(long x, LongBinaryOperator fn,
                              boolean wasUncontended) {
        //存储线程的probe值
        int h;
        //如果getProbe()返回0,说明随机数未初始化
        if ((h = getProbe()) == 0) {
            //使用ThreadLocalRandom为当前线程重新计算一个hash值,强制初始化
            ThreadLocalRandom.current(); // force initialization
            //重新获取prode值,hash值被重置就好比一个全新的线程一样,所以设置了wasUncontended竞争状态为true
            h = getProbe();
            //重新计算了当前线程的hash后认为此次不算是一次竞争,都未初始化,肯定还不存在竞争激烈wasUncontended竞争状态为true
            wasUncontended = true;
        }
        //如果hash取模映射得到的Cell单元不是null,则为true,此值也可以看作是扩容意向
        boolean collide = false;                // True if last slot nonempty
        for (;;) {
            Cell[] as; Cell a; int n; long v;
            //cells已经被初始化了
            if ((as = cells) != null && (n = as.length) > 0) {
                if ((a = as[(n - 1) & h]) == null) {
                    if (cellsBusy == 0) {       // Try to attach new Cell
                        Cell r = new Cell(x);   // Optimistically create
                        if (cellsBusy == 0 && casCellsBusy()) {
                            boolean created = false;
                            try {               // Recheck under lock
                                Cell[] rs; int m, j;
                                if ((rs = cells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                else if (a.cas(v = a.value, ((fn == null) ? v + x :
                                             fn.applyAsLong(v, x))))
                    break;
                else if (n >= NCPU || cells != as)
                    collide = false;            // At max size or stale
                else if (!collide)
                    collide = true;
                
                else if (cellsBusy == 0 && casCellsBusy()) {
                    try {
                        if (cells == as) {      // Expand table unless stale
                            Cell[] rs = new Cell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            cells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = advanceProbe(h);
            }
             //cells没有加锁且没有初始化,则尝试对它进行加锁,并初始化cells数组
            else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
                boolean init = false;
                try {                           // Initialize table
                    if (cells == as) {
                        Cell[] rs = new Cell[2];
                        rs[h & 1] = new Cell(x);
                        cells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            }
            //cells正在进行初始化,则尝试直接在基数base上进行累加操作
            else if (casBase(v = base, ((fn == null) ? v + x :
                                        fn.applyAsLong(v, x))))
                break;                          // Fall back on using base
        }
    } 
 public long sum() {
    Cell[] as = cells; Cell a;
    long sum = base;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}  
 
sum方法将所有Cell数组中的value和base累加作为返回值
核心思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降级更新热点。




















