一、pandas中的对象
1、Series对象
由两个相互关联的数组(values, index)组成,前者(又称主数组)存储数据,后者存储values内每个元素对应关联的标签。
import numpy as np
import pandas as pd
s1 = pd.Series([1, 3, 5, 7])
print(s1)
→0    1
 1    3
 2    5
 3    7
 dtype: int64
print(s1.values)
→[1 3 5 7]
print(s1.index)
→RangeIndex(start=0, stop=4, step=1) 
通过NumPy数组导入Series对象:
arr1 = np.array([1, 3, 5, 7])
s2 = pd.Series(arr1, index=['a', 'b', 'c', 'd'])
s2_ = pd.Series(s2)
print(s2)
→a    1
 b    3
 c    5
 d    7
 dtype: int32
print(s2_)
→a    1
 b    3
 c    5
 d    7
 dtype: int32 
若index数组的值在字典中有对应的键,则生成的Series中对应的元素是字典中对应的值(如果没有,其值为NaN空值)。
dict1 = {"a": 3, "b": 4, "c": 5}
s3 = pd.Series(dict1, index=["a", "b", "c", "d"])
print(s3)
→a    3.0
 b    4.0
 c    5.0
 d    NaN
 dtype: float64 
2、DataFrame对象
将Series的使用场景扩展到多维,由按一定顺序的多列数据(可不同类型)组成,有两个索引数组(index, columns)。
dict2 = {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "c": [9, 10, 11, 12]}
df1 = pd.DataFrame(dict2)
print(df1)
→  a  b   c
0  1  5   9
1  2  6  10
2  3  7  11
3  4  8  12
df2 = pd.DataFrame(np.arange(16).reshape((4, 4)),
                   index=["one", "two", "three", "four"],
                   columns=["ball", "pen", "pencil", "paper"])
print(df2)
→      ball  pen  pencil  paper
one       0    1       2      3
two       4    5       6      7
three     8    9      10     11
four     12   13      14     15
 
 
 
二、pandas的基本操作
1、导入与导出数据
(1)csv文件导入
函数原型read_csv(filepath, sep, names, encoding),参数分别为:导入csv文件的路径、分隔符、导入的列和指定列的顺序(默认按顺序导入所有列)和文件编码(一般为utf-8)。
(2)txt文件导入
read_table()的参数与read_csv()一样,但txt文件的分隔符不确定,所以参数设置需要更严格准确。
(3)Excel文件导入
read_excel()的参数只有三个:路径名、读取表格名和读取列名,一般只需要第一个。
示例如下,其中data.csv的内容如下:

data.txt的内容如下:

data.xlsx的内容如下:

df3 = pd.read_csv(r"D:\Pycharm professional\pythonProject\test_pandas_files\data.csv")
print(df3)
→   0   1   2
0   1   2   3
1   4   5   6
2   7   8   9
3  10  11  12
df4 = pd.read_table(r"D:\Pycharm professional\pythonProject\test_pandas_files\data.txt", sep=' ', header=None)
print(df4)
→  0   1
0  1   2
1  3   4
2  5   6
3  7   8
4  9  10
df5 = pd.read_excel(r"D:\Pycharm professional\pythonProject\test_pandas_files\data.xlsx")
print(df5)
→  0  1  2  3
0  a  b  c  d
1  e  f  g  h
2  i  j  k  l 
(4)数据导出
函数原型为to_csv(filepath, sep, names, encoding),参数分别为:导出csv文件的路径、分隔符(默认为逗号)、是否输出索引(默认为True,即输出索引)和文件编码(一般为utf-8)。
df3.to_csv(r"D:\Pycharm professional\pythonProject\test_pandas_files\data1.csv", index=True, header=True)
df3.to_csv(r"D:\Pycharm professional\pythonProject\test_pandas_files\data2.csv", index=False, header=True) 
data1.csv的内容如下:

data2.csv的内容如下:

2、数据的查看与检查
(1)Series对象
print(s1[2])
→5
print(s2['c'])
→5
print(s2[0:2])
→a    1
 b    3
 dtype: int32
print(s2[['a', 'b']])
→a    1
 b    3
 dtype: int32 
(2)DataFrame对象
print(df2.columns)
→Index(['ball', 'pen', 'pencil', 'paper'], dtype='object')
print(type(df2.columns))
→<class 'pandas.core.indexes.base.Index'>
print(df2.index)
→Index(['one', 'two', 'three', 'four'], dtype='object')
print(type(df2.index))
→<class 'pandas.core.indexes.base.Index'>
print(df2.values)
→[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
print(type(df2.values))
→<class 'numpy.ndarray'>
print(df2["pencil"])
→one       2
 two       6
 three    10
 four     14
 Name: pencil, dtype: int32
print(df2.pen)
→one       1
 two       5
 three     9
 four     13
 Name: pen, dtype: int32
print(df2[0:2])
→    ball  pen  pencil  paper
one     0    1       2      3
two     4    5       6      7 
 
3、数据的增删查改
创建Series对象如下:
s4 = pd.Series([1, 3, 5, 7], index=['a', 'b', 'c', 'd']) 
(1)增加
s4['e'] = 9
print(s4)
→a    1
 b    3
 c    5
 d    7
 e    9
 dtype: int64 
(2)删除
s4.pop('e')
print(s4)
→a    1
 b    3
 c    5
 d    7
 dtype: int64
print(s4.drop('c'))
→a    1
 b    3
 d    7
 dtype: int64
print(s4)
→a    1
 b    3
 c    5
 d    7
 dtype: int64 
(3)查找与修改
s4[2] = 6
s4['a'] = 0
print(s4)
→a    0
 b    3
 c    6
 d    7
 dtype: int64
print(s4[s4 > 4])
→c    6
 d    7
 dtype: int64
df2["pencil"][1] = 12
print(df2)
→      ball  pen  pencil  paper
one       0    1       2      3
two       4    5      12      7
three     8    9      10     11
four     12   13      14     15
 
 
4、pandas的基本运用
(1)数据统计
创建DataFrame对象如下:
arr2 = np.array([1, 2, 3, 4, 5, 6, 7, 8]).reshape(4, 2)
df6 = pd.DataFrame(arr2, index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
print(df6)
→  one  two
a    1    2
b    3    4
c    5    6
d    7    8 
① 求和
print(df6.sum())
→one    16
 two    20
 dtype: int64
print(df6.sum(axis=1))
→a     3
 b     7
 c    11
 d    15
 dtype: int64 
② 累计求和
print(df6.cumsum())
→  one  two
a    1    2
b    4    6
c    9   12
d   16   20 
③ 返回最值行名称
print(df6.idxmax())
→one    d
 two    d
 dtype: object
print(df6.idxmin())
→one    a
 two    a
 dtype: object 
④ 去重
unique()返回NumPy数组,value_counts()返回Series对象(index为不重复的元素,values为不重复元素的频数)。
s5 = pd.Series([1, 3, 5, 7, 2, 4, 3, 5, 7, 6, 7])
print(s5.unique())
→[1 3 5 7 2 4 6]
print(type(s5.unique()))
→<class 'numpy.ndarray'>
print(s5.value_counts())
→7    3
 3    2
 5    2
 1    1
 2    1
 4    1
 6    1
 dtype: int64
print(type(s5.value_counts()))
→<class 'pandas.core.series.Series'> 
⑤ 筛选数据
isin()判定Series对象中每个元素是否包含在给定的参数中。
print(s5.isin([2, 4]))
→0     False
 1     False
 2     False
 3     False
 4      True
 5      True
 6     False
 7     False
 8     False
 9     False
 10    False
 dtype: bool
print(s5[s5.isin([2, 4])])
→4    2
 5    4
 dtype: int64 
(2)算术运算
s6 = pd.Series([20, 40, 60, 80])
print(s6 / 2)
→0    10.0
 1    20.0
 2    30.0
 3    40.0
 dtype: float64
print(np.log(s6))
→0    2.995732
 1    3.688879
 2    4.094345
 3    4.382027
 dtype: float64 
(3)数据对齐
数据清洗的重要过程,可按索引进行对齐运算,没对齐的位置填充NaN,数据末尾也可填充NaN。
s7 = pd.Series({"b": 4, "c": 5, "a": 3})
s8 = pd.Series({"a": 1, "b": 7, "c": 2, "d": 11})
print(s7 + s8)
→a     4.0
 b    11.0
 c     7.0
 d     NaN
 dtype: float64
                














![msyql中SQL 错误 [1118] [42000]: Row size too large (> 8126)](https://img-blog.csdnimg.cn/direct/246464b3a0ae4eed815d9a4f0054d0d0.png)

