Python匿名函数4不要

news2025/5/25 4:24:52

当你需要完成一件小工作时,在本地环境中使用这个函数,可以让工作如此得心应手,它就是Lambda 函数。

Lambda 函数是 Python 中的匿名函数。有些人将它们简称为lambdas,它们的语法如下:

lambda arguments: expression

lambda 关键字可以用来创建一个 lambda 函数,紧跟其后的是参数列表和用冒号分割开的单个表达式。例如,lambda x: 2 * x 是将任何输入的数乘2,而 lambda x, y: x+y 是计算两个数字的和。语法十分直截了当,对吧?

假设您知道什么是 lambda 函数,本文旨在提供有关如何正确使用 lambda 函数的一些常规准则。

1. 不要返回任何值

看看语法,您可能会注意到我们在 lambda 函数中并没有返回任何内容。这都是因为 lambda 函数只能包含一个表达式。然而,使用 return 关键字会构成不符合规定语法的语句,如下所示:

>>> integers = [(3, -3), (2, 3), (5, 1), (-4, 4)]
>>> sorted(integers, key=lambda x: x[-1])
[(3, -3), (5, 1), (2, 3), (-4, 4)]
>>> sorted(integers, key=lambda x: return x[-1])
... 
  File "", line 1
    sorted(integers, key=lambda x: return x[-1])
                                   ^
SyntaxError: invalid syntax

该错误可能是由于无法区分表达式和语句而引起的。像是包含 return、try、 with 以及 if 的语句会执行特殊动作。然而,表达式指的是那些可以被计算出一个值的表达,例如数值或其他 Python 对象。

通过使用 lambda 函数,单个表达式会被计算为一个值并且参与后续的计算,例如由 sorted 函数排序。

2. 不要忘记更好的选择

lambda 函数最常见的使用场景是将它作为一些内置工具函数中 key 的实参,比如上面展示的 sorted() 和 max()。根据情况,我们可以使用其他替代方法。思考下面的例子:

>>> integers = [-4, 3, 7, -5, -2, 6]
>>> sorted(integers, key=lambda x: abs(x))
[-2, 3, -4, -5, 6, 7]
>>> sorted(integers, key=abs)
[-2, 3, -4, -5, 6, 7]
>>> scores = [(93, 100), (92, 99), (95, 94)]
>>> max(scores, key=lambda x: x[0] + x[1])
(93, 100)
>>> max(scores, key=sum)
(93, 100)

在数据科学领域,很多人使用 pandas 库来处理数据。如下所示,我们可以使用 lambda 函数通过 map() 函数从现有数据中创建新数据。除了使用 lambda 函数外,我们还可以直接使用算术函数,因为 pandas 是支持的:

>>> import pandas as pd
>>> data = pd.Series([1, 2, 3, 4])
>>> data.map(lambda x: x + 5)
0    6
1    7
2    8
3    9
dtype: int64
>>> data + 5
0    6
1    7
2    8
3    9
dtype: int64

3. 不要将它赋值给变量

我曾见过一些人将 lambda 函数误认为是简单函数的另一种声明方式,您可能也见过有人像下面这么做:

>>> doubler = lambda x: 2 * x
>>> doubler(5)
10
>>> doubler(7)
14
>>> type(doubler)
<class 'function'>

对 lambda 函数命名的唯一作用可能是出于教学目的,以表明 lambda 函数的确是和其他函数一样的函数——可以被调用并且具有某种功能。除此之外,我们不应该将 lambda 函数赋值给变量。

为 lambda 函数命名的问题在于这使得调试不那么直观。与其他的使用常规 def 关键字创建的函数不同,lambda 函数没有名字,这也是为什么有时它们被称为匿名函数的原因。思考下面简单的例子,找出细微的区别:

>>> inversive0 = lambda x: 1 / x
>>> inversive0(2)
0.5
>>> inversive0(0)
Traceback (most recent call last):
  File "", line 1, in <module>
  File "", line 1, in 
ZeroDivisionError: division by zero
>>> def inversive1(x):
...     return 1 / x
... 
>>> inversive1(2)
0.5
>>> inversive1(0)
Traceback (most recent call last):
  File "", line 1, in <module>
  File "", line 2, in inversive1
ZeroDivisionError: division by zero

当您的代码存在关于 lambda 函数的问题(即 inversive0),Traceback 错误信息只会提示您 lambda 函数存在问题。

相比之下,使用正常定义的函数,Traceback会清晰地提示您有问题的函数(即 inversive1)。

与此相关,如果您想多次使用 lambda 函数,最佳实践是使用通过 def 定义的允许使用文档字符串的常规函数。

4. 不要忘记列表推导式

有些人喜欢将 lambda 函数和高阶函数一起使用,比如 map 或 filter。思考下面用法示例:

>>> # 创建一个数字列表
>>> numbers = [2, 1, 3, -3]
>>> # 使用带有 lambda 函数的 map 函数
>>> list(map(lambda x: x * x, numbers))
[4, 1, 9, 9]
>>> # 使用带有 lambda 函数的 filter 函数
>>> list(filter(lambda x: x % 2, numbers))
[1, 3, -3]

我们可以使用可读性更强的列表推导式代替 lambda 函数。如下所示,我们使用列表推导式来创建相同的列表对象。如您所见,与列表推导式相比,之前将 map 或 filter 函数与 lambda 函数一起使用更麻烦。因此,在创建涉及高阶函数的列表时,应考虑使用列表推导式。

>>> # Use list comprehensions
>>> [x * x for x in numbers]
[4, 1, 9, 9]
>>> [x for x in numbers if x % 2]
[1, 3, -3]

结论

在本文中,我们回顾了使用 lambda 函数可能会犯的四个常见错误。通过避免这些错误,您应该能在代码中正确使用 lambda 函数。

使用 lambda 函数的经验准则是保持简单以及只在本地使用一次。

学习资源推荐
除了上述分享,学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述
👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以V扫描下方二维码联系领取
保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1593350.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

拥有了这24个Python接单平台,你就拥有了“钞能力”

学Python能兼职挣米吗&#xff1f;怎么挣&#xff1f; 一、Python兼职种类&#xff1a; 接私活刚学会python那会&#xff0c;就有认识的朋友介绍做一个网站的私活&#xff0c;当时接单赚了4K&#xff0c;后又自己接过开发网站后台接口、做数据处理等事情&#xff0c;都赚了一…

Python实现外观模式、桥接模式、组合模式和享元模式

今天介绍四种结构型设计模式&#xff1a;外观模式、桥接模式、组合模式和享元模式 外观模式 外观模式&#xff08;Facade Pattern&#xff09;&#xff0c;它为子系统提供一个统一的接口&#xff0c;使得子系统更加容易使用。 在Python中&#xff0c;我们可以通过定义一个外…

记录-若依前端集成markdown文档,自动生成文档目录

使用版本: vue 2.6.12 html-loader 1.3.2 markdown-loader 6.0.0 github-markdown-css ^5.5.1 highlight.js 9.18.5 webpack 4.47.x 一.引入loder插件&#xff0c;html-loader和markdown-loader //安装 pnpm install html-loader --save ; pnpm install markdown-loader --sa…

Zynq学习笔记--AXI 总线概述

目录 1. AXI总线概述 1.1 主要特点 1.2 通道功能 1.3 信号概览 2. AXI Interconnect 2.1 信号说明 2.2 内部结构 3. PS-PL AXI Interface 3.1 AXI FPD/LFP/ACP 3.2 Address Editor 3.3 地址空间 3.4 AXI-DDR 4. 通过ILA观察AXI信号 4.1 AXI 读通道 1. AXI总线概述…

头歌-机器学习 第15次实验 朴素贝叶斯分类器

第1关:条件概率 任务描述 本关任务:根据本节课所学知识完成本关所设置的选择题。 相关知识 为了完成本关任务,你需要掌握条件概率。 条件概率 朴素贝叶斯分类算法是基于贝叶斯定理与特征条件独立假设的分类方法,因此想要了解朴素贝叶斯分类算法背后的算法原理,就不得…

STM32-看门狗

1、看门狗是什么&#xff1a;就是一个向下定时器&#xff0c;定时时间一到&#xff0c;就会触发一个向下的复位的中断&#xff0c;使单片机开始工作 2、作用&#xff1a;MCU微控制器构成的微型计算机系统中&#xff0c;由于微控制器的工作常常会受到来自外界电磁场的干 扰,造成…

PostgreSQL入门到实战-第二十六弹

PostgreSQL入门到实战 PostgreSQL中数据分组操作(一)官网地址PostgreSQL概述PostgreSQL中GROUP BY命令理论PostgreSQL中GROUP BY命令实战更新计划 PostgreSQL中数据分组操作(一) 如何使用PostgreSQL GROUP BY子句将行分组。 官网地址 声明: 由于操作系统, 版本更新等原因, 文…

Transformer 结构浅析

Transformer 结构浅析 文章目录 Transformer 结构浅析Transformer 网络结构编码器位置编码多头注意力层Add&NormFeed Forward 解码器带掩码的多头注意力层多头注意力层 预测 Transformer 网络结构 Transformer模型的网络结构如图&#xff0c;且transformer结构主要分为两部…

编曲知识18:EQ均衡器 齿音处理 呼吸音处理 口水音处理

EQ均衡器 齿音处理 呼吸音处理 口水音处理小鹅通-专注内容付费的技术服务商https://app8epdhy0u9502.pc.xiaoe-tech.com/live_pc/l_66151c90e4b092c1187ac699?course_id=course_2XLKtQnQx9GrQHac7OPmHD9tqbv 均衡器 均衡器 Equalizer(简称EQ) 人耳接受频率:20hz—20khz …

python基础——类型注解【变量,函数,Union】

&#x1f4dd;前言&#xff1a; 上一篇文章Python基础——面相对象的三大特征提到&#xff0c;python中的多态&#xff0c;python中&#xff0c;类型是动态的&#xff0c;这意味着我们不需要在声明变量时指定其类型。然而&#xff0c;这可能导致运行时错误&#xff0c;因为我们…

【每日一算】冒泡算法

冒泡算法就是给数据排序的意思。比如说升序&#xff0c;17&#xff0c;8&#xff0c;9&#xff0c;28&#xff0c;5.升序之后的结果就是5&#xff0c;8&#xff0c;9&#xff0c;17&#xff0c;28. 从我们的大脑思维来看&#xff0c;结果一眼就有了&#xff0c;可是机器要怎么才…

论文阅读:Polyp-PVT: Polyp Segmentation with PyramidVision Transformers

这篇论文提出了一种名为Polyp-PVT的新型息肉分割框架&#xff0c;该框架采用金字塔视觉变换器&#xff08;Pyramid Vision Transformer, PVT&#xff09;作为编码器&#xff0c;以显式提取更强大的特征。本模型中使用到的关键技术有三个&#xff1a;渐进式特征融合、通道和空间…

Linux 【进程】

什么是进程 Linux中的进程是指正在运行的程序实例。每个进程都是操作系统内部管理的独立实体&#xff0c;具有自己的地址空间、代码、数据和打开的文件等资源。进程是并发执行的基本单位&#xff0c;可以同时运行多个进程。 Linux中的进程通过创建父子关系形成一个进程树。当一…

软件测试20个基础面试题及答案

什么是软件测试&#xff1f; 答案&#xff1a;软件测试是指在预定的环境中运行程序&#xff0c;为了发现软件存在的错误、缺陷以及其他不符合要求的行为的过程。 软件测试的目的是什么&#xff1f; 答案&#xff1a;软件测试的主要目的是保证软件的质量&#xff0c;并尽可能…

Docker入门实战教程

文章目录 Docker引擎的安装Docker比vm虚拟机快 Docker常用命令帮助启动类命令镜像命令docker imagesdocker searchdocker pulldocker system dfdocker rmi 容器命令redis前台交互式启动redis后台守护式启动Nginx容器运行ubuntu交互式运行tomcat交互式运行对外暴露访问端口 Dock…

头歌-机器学习实验 第8次实验 决策树

第1关&#xff1a;什么是决策树 任务描述 本关任务&#xff1a;根据本节课所学知识完成本关所设置的选择题。 相关知识 为了完成本关任务&#xff0c;你需要掌握决策树的相关基础知识。 引例 在炎热的夏天&#xff0c;没有什么比冰镇后的西瓜更能令人感到心旷神怡的了。现…

【深度学习实战(1)】如何使用argparse模块设置自己的训练参数

一、argparse模块用法 1、argparse是一个python模块&#xff0c;用途是&#xff1a;命令行选项、参数和子命令的解释。 2、argparse库下载&#xff1a;pip install argparse 3、使用步骤&#xff1a; 导入argparse模块&#xff0c;并创建解释器 添加所需参数 解析参数 二、…

Linux vi/vim说明用法

Linux vi/vim 所有的 Unix Like 系统都会内建 vi 文书编辑器&#xff0c;其他的文书编辑器则不一定会存在。 但是目前我们使用比较多的是 vim 编辑器。 vim 具有程序编辑的能力&#xff0c;可以主动的以字体颜色辨别语法的正确性&#xff0c;方便程序设计。 以下是使用 vi 或 v…

linux线程 -- 线程池

一 什么是线程池 1.1 线程池的概念 所谓的 线程池 就是 提前创建一批线程&#xff0c;当任务来临时&#xff0c;线程直接从任务队列中获取任务执行&#xff0c;可以提高整体效率&#xff1b;同时一批线程会被合理维护&#xff0c;避免调度时造成额外开销。 1.2 池化技术 像这种…

蓝桥杯真题演练:2023B组c/c++

日期统计 小蓝现在有一个长度为 100 的数组&#xff0c;数组中的每个元素的值都在 0 到 9 的范围之内。 数组中的元素从左至右如下所示&#xff1a; 5 6 8 6 9 1 6 1 2 4 9 1 9 8 2 3 6 4 7 7 5 9 5 0 3 8 7 5 8 1 5 8 6 1 8 3 0 3 7 9 2 7 0 5 8 8 5 7 0 9 9 1 9 4 4 6 8 6 3 …