在 Elasticsearch 中扩展 ML 推理管道:如何避免问题并解决瓶颈

news2025/6/8 23:51:53

作者:来自 Elastic Iulia Feroli


是时候考虑语义搜索运营了吗?

无论你是一位经验丰富的搜索工程师,希望探索新的人工智能功能,还是一位机器学习专家,希望更多地利用搜索基础设施来增强语义相似性模型 —— 充分利用这些领域的交集可能需要熟悉一些新概念。

虽然 Elasticsearch 提供了一些快速启动指南,比如 ELSER 示例 notebook (或者对于本地的 Elasticsearch, 你可以参考 “Elasticsearch:使用 ELSER 文本扩展进行语义搜索”),但当你希望扩展推理过程时,会引入更多的配置选项。

在本博客中,我们将看看在处理更复杂的工作负载时,可能遇到的潜在瓶颈以及缓解成长烦恼的方法。

在部署大型语言模型到你的环境时,以下是一些需要注意的步骤。

在下载模型之前

机器学习节点大小 在 Elasticsearch 中使用 NLP 模型构建项目的第一步是设置部署模型的正确基础设施。

正确的机器学习节点配置可能是第一个潜在的瓶颈,因此请确保你为预期的结果选择了合适的大小。

推荐的最小大小:

如果关闭了部署自动扩缩,则部署和使用 ELSER 模型的专用机器学习节点的最小大小为 4 GB;对于自然语言处理模型,则为 16 GB。

建议打开自动扩缩,因为它允许你的部署根据需求动态调整资源。

参见文档。

你可能遇到的故障排除场景:

潜在的瓶颈Error 信息解决方案
ML Node is not big enoughApiError(429, 'status_exception', 'Could not start deployment because no ML nodes with sufficient capacity were found')确保为 ML 节点选择合适的大小,并最好启用自动扩展,以便你的部署在遇到额外请求时可以扩展。
Autoscaling limit is not high enoughAutoscaling limits reached. To continue experiencing optimal performance, we recommend increasing your maximum size per zone for the topologies: Machine Learning.还有一些情况,ML 节点足够大,可以下载模型,但如果配置不正确,大吞吐量的推理调用仍然会使系统过载。 增加大小,确保你的分配使用所有可用的 CPU,或使用较小的数据批次来缓解。

模型配置

更大的节点大小也允许在选择模型的分配和线程数量时具有更大的灵活性。

每个线程需要一个 CPU 或 vCPU,所以例如 8 个 CPU 可以让你拥有 1 个分配,每个分配最多 8 个线程,或者最多 8 个分配,每个分配 1 个线程,或者其他排列组合,只要满足以下条件:

umber_of_allocations * threads_per_allocation <= number of available CPUs.

在同一 ML 节点上部署多个模型将共享这些资源,因此你可以通过配置每个模型的最大访问来根据需要分配你的 CPU。

此外,每个模型部署的分配都有一个用于推理请求的有限队列。当对同一部署进行了太多调用并且队列填满时,所有后续请求都将被拒绝。考虑使用专用部署以防止此情况发生。

对于每个部署和用例,你应考虑以下参数:

参数功能
number_of_allocations通过允许并行执行更多推理请求来提高吞吐量。 这反过来又会提高摄取性能。默认为 1; 但你应该更改此设置,以便使用所有可用的 CPU。
threads_per_allocation提高每个推理请求的速度,从而提高搜索速度。默认为 1; 但你应该更改此设置,以便使用所有可用的 CPU。
queue_capacity控制队列中一次允许有多少个推理请求。 当请求数量超过总数时,新请求将被拒绝并返回 429 错误。默认为 1024。最大允许值为 1000000。

此设置的值不得超过每个节点可分配的处理器数量。

请参考有关 ELSER 性能随分配数量增加而提高的基准测试信息作为示例。

在部署模型时

一旦模型已经下载到你的集群中,你可以开始部署它,同时考虑前面讨论的参数。在这个阶段,如果你计划部署同一模型的多个实例,可以考虑使用唯一的 deployment_id。

client.ml.start_trained_model_deployment(
    model_id=".elser_model_2", 
    deployment_id="elser_inference_1",
    number_of_allocations=1, 
    threads_per_allocation=8,
    queue_capacity=7000, 
    timeout="1m", 
    wait_for="starting"
)

在此阶段你可能会遇到一些潜在的瓶颈或错误:

瓶颈解释 / Error 信息解决方案
部署期间超时在不指定 wait_for 参数的情况下,它默认为 started,这意味着只有当模型下载完成并成功部署时,你才会收到响应。然而,这个过程会相当耗时,具体取决于模型大小,而且由于 timeout 参数也默认为仅 30 秒,这通常会导致错误。请改用 wait_for="starting",和/或 增加引发错误之前的等待时间:timeout="3m"
不按顺序运行这些步骤(具体示例请参阅下面的行)在上一步完成运行之前运行命令将导致错误:使用 status = client.ml.get_trained_models(model_id=".elser_model_2", include="definition_status") 检查模型的状态
尝试在模型完全下载之前部署模型Model definition truncated. Unable to deserialize trained model definition [.elser_model_2]你应该仅在 status["trained_model_configs"][0]["complete_define"] == True 时尝试部署模型
尝试对尚未完全部署的模型运行推理404, 'resource_not_found_exception', 'Could not find trained model [.elser_model_2]'

在运行推理之前

一旦模型部署完成,你就可以开始对其进行推理调用。这可以通过 inference API 来完成:

response = client.ml.infer_trained_model(
    model_id=model_id, 
    docs=[{"text_field": query}])

这个推理命令也有一个默认的超时时间为 10 秒,当一次生成少量文档的嵌入时是足够的。

然而,对于大多数实际用例,将会有大量需要处理的文档;例如,在一个大型索引中为每个文档创建嵌入以启用语义搜索功能。

你可以增加超时时间:

response = client.ml.infer_trained_model(model_id=model_id, docs=docs, timeout="5m")

然而,正如前面的部分所提到的,根据分配的数量或发送到同一部署的不同任务的数量,模型也将有一个最大文档队列接受限制。因此,即使设置了较长的超时时间,对于大吞吐量来说,这种方法可能仍然不足够。

另一个选择是为推理过程创建摄入管道。你还可以为不同的管道使用不同的部署:一个用于在摄入新数据时生成嵌入,另一个用于在搜索时运行推理。 管道还允许你通过在 processors 列表中添加元素来设置自定义操作,例如重命名字段或为不同任务使用多个模型。你还可以在后台或按照定期时间表运行较长的任务。

client.ingest.put_pipeline(
    id="elser-2-ingest-pipeline-1",
    description="Ingest pipeline for ELSER with a lot more requests",
    processors=[
        # omitting processors code
    ])

client.reindex(
    source={"index": "raw_data"},
    dest={"index": "data_with_embeddings", "pipeline": "elser-2-ingest-pipeline-1"},
    wait_for_completion=False,
)
瓶颈解决方案
Timeout与前面的步骤类似,冗长的管道过程可能会导致超时。 使用 wait_for_completion = False 参数。
Waiting for pipeline to finish你可以使用从 reindex 函数获得的任务 ID 稍后通过 client.tasks.get(task_id=task_id) 跟踪管道进度。 使用 wait_for_completion 参数时会生成此 ID。

监控和调整

一旦你部署了模型并开始使用推理服务,你可以查看配置的性能。通常,这是确定特定用例的适当参数的最佳方法,并根据需要进行调整,直到达到所需的性能。

举一个简单的例子,如果你部署了一个模型而没有配置上述讨论的任何设置,这些将是分配的默认值:

{
  "threads_per_allocation" : 1, 
  "number_of_allocations" : 1, 
  "queue_capacity" : 1024
}

假设通过推理管道将大量文档发送到该模型后,我们注意到线程分配中的一些警告信号。 endpoint:

GET _nodes/hot_threads

响应:

ml.allocated_processors=16

100.0% [cpu=3.5%, other=96.5%] cpu usage by thread

ML 节点分配有 16 个处理器,但我们仅在模型的一个实例中利用其中 1 个处理器。 此外,在其他而不是与 CPU 相关的任务下报告的高利用率意味着该过程中存在大量等待和冗余,并且我们的文档大部分时间都在排队。

为了优化性能,你应该使用所有可用的内核。

你还可以在训练模型 UI 中或通过以下命令查看更多指标:

GET _ml/trained_models/_stats

在这里你可以看到更多有用的信息,例如 average_inference_time_ms、number_of_pending_requests 或 peak_throughput_per_分钟。

作为说明,这里有两个模型部署在同一个 ML 节点上,在相同的管道和数据上运行推理,但采用不同的分配策略。 你可以看到配置模型的推理时间几乎减半。

Model IDAllocationAverage Inference time
elser_inference_configured3 * 867.80 milliseconds
.elser_model_21 * 1115.58 milliseconds

结论

这既是一件好事,也可能是一件困难的事情,有多种灵活和模块化的方法来构建适合你的项目的推理架构。 为每个用例构建最佳方法也不仅仅是选择正确的配置或基础设施设置。 你可以详细了解模型的检索优化甚至数据处理决策(例如分块策略)如何影响性能。

Elasticsearch 汇集了令人惊叹的开箱即用功能,并提供自定义选项和指导,帮助你构建最佳的语义搜索解决方案。

准备好将 RAG 构建到你的应用程序中了吗? 想要尝试使用向量数据库的不同 LLMs?
在 Github 上查看我们的 LangChain、Cohere 等示例 notebooks,并参加即将开始的 Elasticsearch 工程师培训!

原文: Scaling ML Inference Pipelines in Elasticsearch: How to avoid issues and troubleshoot bottlenecks — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1592563.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

jenkins下载安装(mac)

下载官网 具体 直接命令安装 Sample commands: Install the latest LTS version: brew install jenkins-ltsStart the Jenkins service: brew services start jenkins-ltsRestart the Jenkins service: brew services restart jenkins-ltsUpdate the Jenkins version: brew u…

Linux02(项目部署,手动和自动部署,JDK版本问题,安装软件,安装软件,安装JDK,Tomcat,MySQL,Irzsz)

目录 一、安装软件 1. 安装准备工作 1 Linux里的软件安装方式 2 上传软件到Linux 3 拍照虚拟机快照 2. 安装JDK 1 卸载自带jdk 2 解压JDK 3 配置环境变量 4 测试JDK 3. 安装Tomcat 1 解压Tomcat 2 修改防火墙设置 3 测试Tomcat 启动Tomcat 访问Tomcat 查看Tom…

【Jenkins PipeLine】Jenkins PipeLine 联动参数示例

目录 1. Pipeline script&#xff1a; 1.1.代码说明&#xff1a; 2. 实现效果&#xff1a; 3.联动说明&#xff1a; 4.Jenkins安装插件 1. Pipeline script&#xff1a; properties([parameters([[$class: "ChoiceParameter", choiceType: "PT_SINGLE_SELE…

redis的主从复制(docker方式快速入门和实战)

目录 一、主从复制简介 二、配置主从服务器 2.1使用配置文件的形式来主从复制 2.2使用纯代码的方式来进行主从复制&#xff1b; 2.3脱离主服务器 三、一些注意事项 一、主从复制简介 主从复制&#xff0c;是指将一台Redis服务器的数据&#xff0c;复制到其他的Redis服务器…

【opencv】示例-pca.cpp PCA图像重建演示

// 加载必要的头文件 #include <iostream> // 用于标准输入输出流 #include <fstream> // 用于文件的输入输出 #include <sstream> // 用于字符串的输入输出流操作#include <opencv2/core.hpp> // OpenCV核心功能的头文件 #include "o…

Upload-labs(Pass-17--Pass-21)

Pass-17 二次渲染图片马/条件竞争 二次渲染就是在我们上传的图片后&#xff0c;网站会对图片进行二次处理&#xff0c;比如对图片的尺寸、格式、以及网站对图片进行定义的一些要求等进行处理&#xff0c;并且服务器会对里面的内容进行二次替换更新&#xff0c;在处理完后&…

【深度学习】图像超分辨

案例 7&#xff1a;图像超分辨 相关知识点&#xff1a;生成对抗网络、图像处理&#xff08;PIL&#xff09;和可视化&#xff08;matplotlib&#xff09; 1 任务目标 1.1 任务和数据简介 ​ 本次案例将使用生成对抗网络来实现 4 倍图像超分辨任务&#xff0c;输入一张低分辨…

搭建基于Hexo的个人博客,以及git相关命令

全文写完之后的总结 测试命令 hexo clean hexo g hexo s 上传到服务器命令 hexo clean hexo g hexo d 上传到服务器&#xff08;如果上一个命令用不了&#xff09;&#xff0c;也要先hexo clean,hexo g git init git add . git commit -m "first commit" git p…

.NET i18n 多语言支持与国际化

环境 WIN10 VS2022 .NET8 1.&#x1f44b;创建项目 2.&#x1f440;创建Resources Controllers HomeController.en.resx HomeController.fr.resx HomeController.zh.resx 3.&#x1f331;Program.cs添加国际化支持 // 添加国际化支持 builder.Services.AddLocalization(…

【OTA】STM32新能源汽车OTA技术ymodem协议PC串口升级过程

【OTA】STM32新能源汽车OTA技术ymodem协议PC串口升级过程 文章目录 前言一、实验工具1.串口USB线——烧录APP2生成的BIN文件2.STLINK——烧录BOOT代码和APP1代码3.烧录工具——将BIN文件烧录到单片机中4.FLYMCU——清除芯片FLASH 二、硬件绘制1.原理图2.PCB 三、软件配置1.BOOT…

【GD32】MQ-3酒精检测传感器

2.31 MQ-3酒精检测传感器 MQ-3气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(Sn0)。当传感器所处环境中存在酒精蒸气时&#xff0c;传感器的电导率随空气中酒精蒸气浓度的增加而增大。使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。…

设计模式代码实战-装饰者模式

1、问题描述 小明喜欢品尝不同口味的咖啡&#xff0c;他发现每种咖啡都可以加入不同的调料&#xff0c;比如牛奶、糖和巧克力。他决定使用装饰者模式制作自己喜欢的咖啡。 请设计一个简单的咖啡制作系统&#xff0c;使用装饰者模式为咖啡添加不同的调料。系统支持两种咖啡类型…

【Vue + keep-alive】路由缓存

一. 需求 列表页&#xff0c;n 条数据项可打开 n 个标签页&#xff0c;同时1条数据项的查看和编辑共用一个标签页。如下所示&#xff1a; 参考 // 主页面 // 解决因 路由缓存&#xff0c;导致 编辑后跳转到该页面 不能实时更新数据 onActivated(() > {getList() })二. 实现…

ISP图像处理pipeline简介1

ISP 是什么&#xff1f; ISP (Image Signal Processor)&#xff0c;图像信号处理器&#xff0c;是用于摄影和视频处理的一种专用芯片。它是用来干什么的呢&#xff1f;简单说就是用来将图像传感器&#xff08;CCD, CMOS&#xff09;信号转化成可视的信号的功能&#xff0c;这里…

基于Docker构建CI/CD工具链(八)用nginx收集测试报告

当前&#xff0c;我们已经介绍了如何使用 Apifox 和 JMeter 进行测试&#xff0c;尽管控制台已经输出了测试结果&#xff0c;但在实际工作中&#xff0c;我们通常需要更详细的测试报告。 测试报告在测试过程中已经生成&#xff0c;只需将其托管起来以便查阅。如果你有现成的 C…

【opencv】示例-minarea.cpp 如何寻找一组随机生成的点的最小外接矩形、三角形和圆...

// 包含OpenCV库的高GUI模块和图像处理模块的头文件 #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp"// 包含标准输入输出流的头文件 #include <iostream>// 使用命名空间cv和std&#xff0c;这样我们就可以直接使用OpenCV和标准库的…

【Sql Server】锁表如何解锁,模拟会话事务方式锁定一个表然后进行解锁

大家好&#xff0c;我是全栈小5&#xff0c;欢迎来到《小5讲堂》。 这是《Sql Server》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解。 温馨提示&#xff1a;博主能力有限&#xff0c;理解水平有限&#xff0c;若有不对之处望指正&#xff01; 目录 前言创建表模拟…

11 Php学习:函数

PHP 内建函数Array 函数 PHP Array 函数是 PHP 核心的组成部分。无需安装即可使用这些函数。 创建 PHP 函数 当您需要在 PHP 中封装一段可重复使用的代码块时&#xff0c;可以使用函数。下面详细解释如何创建 PHP 函数并举例说明。 创建 PHP 函数的语法 PHP 函数的基…

ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写

2022年11月30日&#xff0c;可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5&#xff0c;将人工智能的发展推向了一个新的高度。2023年4月&#xff0c;更强版本的ChatGPT4.0上线&#xff0c;文本、语音、图像等多模态交互方式使其在…

anaconda创建了虚拟python环境,且安装了pytorch,但是pycharm中import torch运行时报错

报错如下&#xff1a; C:\Users\tashi\.conda\envs\test1\python.exe D:\project\python\transformer\main.py C:\Users\tashi\.conda\envs\test1\lib\site-packages\numpy\__init__.py:127: UserWarning: mkl-service package failed to import, therefore Intel(R) MKL init…