Redis中的集群(九)

news2025/6/9 16:48:28

集群

消息

集群中的各个节点通过发送和接收消息(message)来进行通信,我们称发送消息的节点为发送者(sender),接收消息
的节点成为接收者,如图所示。节点发送的消息主要有以下五种:

  • 1.MEET消息:当发送者接到客户端发送的CLUSTER MEET命令时,发送者会向接收者发送MEET消息,请求接收者加入到发送者当前所处的集群里面
  • 2.PING消息:集群里每个节点默认每隔一秒钟就会从已知节点列表中随机选出五个节点,然后对这五个节点中最长时间没有发送过PING消息的节点发送PING消息,以此来检测被选中的节点是否在线。除此之外,如果节点A最后一次收到节点B发送的PONG消息的时间,距离当前时间已经超过了节点A的cluster-node-timeout选项设置时长的一般,那么节点A也会向节点B发送PING消息,这可以防止节点A因为长事件没有随机选中节点B作为PING消息的发送对象而导致对象节点B的信息更新滞后
  • 3.PONG消息,当接收者收到发送者发来的MEET消息或者PING消息时,为了向发送者确认这条MEET消息或者PING消息已经到达,接收者会向发送者返回一条PONG消息。另外,一个节点也可以通过向集群广播自己的PONG消息来让集群中的其他节点立即刷新关于这个节点的认识,例如当一次故障转移操作成功执行之后,新的主节点会向集群广播一条PONG消息,以此来让集群中的其他节点立即知道这个节点已经变成了主节点,并且接管了已下线节点负责的槽
  • 4.FAIL消息:当一个主节点A判断另一个主节点B已经进入FAIL状态时,节点A会向集群广播一条关于节点B的FAIL消息,所有收到这条消息的节点都会立即将节点B标记为已下线
  • 5.PUBLISH消息:当节点接收到一个PUBLISH命令时,节点会执行这个命令,并向集群广播一条PUBLISH消息,所有接收到这条PUBLISH消息的节点都会执行相同的PUBLISH命令
    在这里插入图片描述

一条消息由消息头(header)和消息正文(data)组成

消息头

节点发送的所有消息都由一个消息头包裹,消息头除了包含消息正文之外,还记录了消息发送者自身的一些信息,因为这些信息也会被消息接收者用到,所以严格来讲,可以认为消息头本身也是消息的一部分。
每个消息头都由一个cluster.h/clusterMsg结构表示clusterMsg.data属性指向联合cluster.h/clusterMsgData,这个联合就是消息的正文:
clusterMsg结构的currentEpoch、sender、myslots等属性记录了发送者自身的节点信息,接收者会根据这些信息在自己的clusterState.nodes字典里找到发送者对应的clusterNode结构,并对结构进行更新

例子
  • 举个例子,通过对比接收者为发送者记录的槽指派信息,以及发送者在消息头的myslots属性记录的槽指派信息,接收者可以知道发送者的槽指派信息是否发生了变化,又或者说,通过对比接收者为发送者记录的标识值,以及发送者在消息头的flags属性记录的标识值,接收者可以知道发送者的状态和角色是否发生了变化,例如节点状态由原来的在线变成了下线,或者由主节点变成了从节点等等
clusterMsg结构表示
typedef struct {
// 消息的长度(包括这个消息头的长度和消息正文的长度)
uint32_t totlen;

// 消息的类型
uint16_t type;

// 消息正文包含的节点信息数量
// 只在发送MEET、PING、PONG这三种Gossip协议信息时使用
uint16_t count;

// 发送者所处的纪元
uint64_t currentEpoch;

// 如果发送者是一个主节点,那么这里记录的是发送者的配置纪元
// 如果发送者是一个从节点,那么这里记录的是发送者正在复制的主节点的配置纪元
uint64_t configEpoch;

// 发送者的名字(id)
char sender[REDIS_CLUSTER_NAMELEN];

// 发送者目前的槽指派信息
unsigned char myslots[REDIS_CLUSTER_SLOTS/8];
// 如果发送者是一个从节点,那么这里记录的是发送者正在复制的主节点的名字
// 如果发送者是一个主节点,那么这里记录的是REDIS_NODE_NULL_NAME
char slaveof[REDIS_CLUSTER_NAMELEN];
// 发送者的端口号
uint16_t port;
// 发送者的标识值
uint16_t flags;

// 发送者所处集群的状态
unsigned char state;
// 消息的正文(或者说,内容)
unio clusterMsgData data;
}clusterMsg;
clusterMsgData表示
union clusterMsgData {
struct {
// MEET、PING、PONG消息都包含两个clusterMsgDataGossip结构
clusterMsgDataGossip gossip[1];
} ping;

// FAIL消息的正文
struct {
clusterMsgDataFail abount;
}fail;

// PUBLISH消息的正文
struct {
clusterMsgDataPublish msg;
}publish;

// 其他消息正文...
}

MEET、PING、PONG消息的实现

Redis集群中的各个节点通过Gossip协议来交换各自不同节点的状态信息,其中Gossip协议由MEET、PING、PONG三种消息实现,这三种消息的正文都由两个cluster.h/clusterMsgDataGossip结构组成:

union clusterMsgData {
// ...
// MEET、PING和PONG消息的正文
struct {
// 每条MEET、PING、PONG消息都包含两个
// clusterMsgDataGossip结构
clusterMsgDataGossip gossip[1];
}ping
};

因为MEET、PING、PONG三种消息都由相同的消息正文,所以节点通过消息头的type属性来判断一条消息是MEET消息、PING消息和PONG消息。每次发送MEET、PING、PONG消息时,发送者都从自己的已知节点列表中随机选出两个节点(可以是这个主节点或者从节点),并将这两个被选中节点的信息分别保存到两个clusterMsgDataGossip结构里面。
clusterMsgDataGossip结构记录了被选中节点的名字,发送者与被选中节点最后一次发送和接收PING消息和PONG消息的时间戳,被选中节点的IP地址和端口号,以及被选中节点的标识值:

typedef struct {
// 节点的名字
char nodename[REDIS_CLUSTER_NAMELEN];
// 最后一次向该节点发送PING消息的时间戳
uint32_t ping_sent;
// 最后一次从该节点接收到PONG消息的时间戳
uint32_t pong_received;

// 节点的IP地址
char ip[16];
// 节点的端口号
uint16_t port;
// 节点的标识值
uint16_t flags;
}clsterMsgDataGossip

当接收者收到MEET、PING、PONG消息时,接收者会访问消息正文中的两个clusterMsgDataGossip结构,并根据自己是否认识clusterMsgDataGossip结构中记录的被选中节点来选择进行哪种操作:

  • 1.如果被选中节点不存在于接收者的已知节点列表,那么说明接收者是第一次接触到被选中节点,接收者将根据结构中记录的IP地址和端口号等信息,与被选中节点进行握手.
  • 2.如果被选中节点已经存在与接收者的已知节点列表,那么说明接收者之前已经被选中节点进行过接触,接收者将根据clusterMsgDataGossip
    结构记录的信息,对被选中节点所对应的clusterNode结构进行更新
例子
  • 举个发送PING消息和返回PONG消息的例子,假设在一个包含A、B、C、D、E、F六个节点的集群里:
    1.节点A向节点D发送PING消息,并且消息里面包含了节点B和节点C信息,当节点D接收到这条信息,它将更新自己对节点B和节点C的认知
    2.之后,节点D将向节点A返回一条PONG消息,并且消息里面包含了节点E和节点F的消息,当节点A接收到这条PONG消息时,它将更新自己对节点E和节点F的认知。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1592452.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

# Nacos 服务发现-快速入门-创建服务消费者模块,使用 feign 调用 服务生产者

Nacos 服务发现-快速入门-创建服务消费者模块,使用 feign 调用 服务生产者 1、 新增 quickstart_consumer 子工程(子模块), 创建子模块:--> 右键 nacos_discovery 父工程 --> Modules --> Maven --> G…

android gradle版本无法下载

android gradle版本无法下载问题解决方法 在引入一个新的android项目的时候,通常会因为无法下载gradle版本而一直卡在同步界面,类似于下面的情况。 这是因为gradle运行时首先会检查distributionUrlhttps://services.gradle.org/distributions/gradle-5.6…

·13·1dawwd

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话: 知不足而奋进,望远山而前行&am…

lv_micropython to download and building

想要在ESP32-C3使用Micropython开发GUI,所以需要编译lv_micropython,当前github上的版本是9.1.0。 一、开发环境 因为编译lv_micropython需要在linux系统下,但是我的电脑是windows系统,所以我在windows系统上安装了VMware虚拟机&…

牛客2024【牛客赛文X】春招冲刺ONT61 每日温度【hard 单调栈 Java、Go、PHP】

题目 题目链接: https://www.nowcoder.com/practice/1f54e163e6944cc7b8759cc09e9c78d8 思路 单调栈最直接的应用就是获取数组中每个位置i,i的左边第一个比i大或者小的位置/数以及,i的右边第一个比i大或者小的位置/数不懂的同学看这里https://blog.csdn.net/Borsl…

Vulnhub靶机 DC-1渗透详细过程

Vulnhub靶机:DC-1渗透详细过程 目录 Vulnhub靶机:DC-1渗透详细过程一、将靶机导入到虚拟机当中二、攻击方式主机发现端口扫描web渗透利用msf反弹shell数据库信息web管理员密码提权 一、将靶机导入到虚拟机当中 靶机地址: https://www.vulnhub.com/entry/dc-1-1,29…

英伟达高性能芯片供货周期缩短到2-3个月,今年GPU不再紧缺?

戴尔台湾地区总经理Terence Liao近日称,英伟达高性能 AI GPU的交付周期在过去几个月中已从3-4个月缩短到仅2-3个月,进入2024年以来交货等待时间一直在不短缩短,目前的2-3个月已经是英伟达高性能GPU最短的交货期。 英伟达公司正在不断努力提高…

wsl下Linux使用chatglm.cpp记录

目录 前言 一些说明 过程 git chatglm.cpp代码 安装相关包 convert量化ggml cmake构建项目 命令行模型推理 webdemo模型推理 APIServer 性能表现 gpu推理设置 前言 Linux之前用的少,多数还是在Windows下操作,导致对Linux很陌生,…

MES系统中的业务过程管理流程

MES即制造执行系统,也可称为生产执行系统,是一套面向制造企业车间执行层的生产信息化管理系统。 mes系统的业务流程包括哪些方面呢: 一、生产计划与调度 mes系统中的生产计划与调度模块,能够根据企业生产实际情况,制…

淘宝批量采集商品详情数据(属性丨详情图丨sku丨价格等)

淘宝批量采集商品详情数据(包括属性、详情图、SKU、价格等)可以通过以下几种方式实现: 使用淘宝数据抓取工具:这类工具,如某鱼等,能够自动化采集淘宝商品数据,并将其转换成CSV、Excel等格式&am…

从0到1实现RPC | 12 限流

在服务提供者provider端添加限流逻辑 限流:指定时间内请求数超过指定阈值时就抛出异常。 在ProviderInvoker的调用过程中,添加限流逻辑: 使用滑动窗口SlidingTimeWindow统计30s的请求数;每个服务service对应一个滑动窗口&#…

pom.xml显示灰色并被划线

在使用 IDEA 进行开发的过程中,有时候会遇到 pom.xml 显示灰色并被划线的情况,如下图: 这一般是因为该文件被 Maven 忽略导致的,可以进行如下操作恢复: 设置保存后,可以看到 pom.xml 恢复了正常&#xff1a…

Go语言中如何正确使用 errgroup

不管是哪种编程语言,重新发明轮子都不是一个好主意。代码库重新实现如何启动多个goroutine并汇总错误也很常见。但是Go生态系统中的一个包旨在支持这种常见的用例。让我们来看看这个包并了解为什么它应该成为Go开发人员工具集的一部分。 golang.org/x是一个为标准库提供扩展的…

网络变压器(网络隔离变压器)是如何影响网通设备的传输速率的呢?

Hqst华轩盛(石门盈盛)电子导读:今天介绍网络变压器(网络隔离变压器/网络滤波器)是如何影响网通设备的传输速率的 一、网络变压器(网络隔离变压器/网络滤波器)的工作原理 网络变压器(网络隔离变压器/网络滤…

04异常Lambda算法正则

异常 异常是什么? 异常是代码在编译或者执行的过程中可能出现的错误。避免异常的出现,同时处理可能出现的异常,让代码更稳健。 异常分为几类? 编译时异常、运行时异常。编译时异常:没有继承RuntimeExcpetion的异常…

python爬虫--------Beautiful Soup 案列(二十一天)

🎈🎈作者主页: 喔的嘛呀🎈🎈 🎈🎈所属专栏:python爬虫学习🎈🎈 ✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天…

JRT多平台初始化程序

这么多年客户端一直只做Windows,所以初始化程序用C#写个Exe,按网站生成的下载清单文件一个个下载和部署客户端环境是可以的。新的由于设计目标就是支持多平台的,所以需要重新考虑初始化设计。 JRT-Linux初始化演示 JRT-Windows初始化演示 …

【STL详解 —— list的介绍及使用】

STL详解 —— list的介绍及使用 list的介绍list的介绍使用list的构造list iterator的使用list capacitylist element accesslist modifiers 示例list的迭代器失效 list的介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭…

Linux内核中KASLR功能是什么?有什么作用?怎么破除?以及如何实操?(地址空间、layout random、kallsyms)

1. 背景 KASLR是一个什么技术点其实不重要,但重要的是有了KASLR这个功能后,造成内核中某个符号(函数 or 变量)在System.map中的地址和实际不一样了(实际: cat /proc/kallsyms),进一…

vector及cv::Mat删除指定元素并不改变位置

1、vector删除指定元素且不改变原有的顺序 使用erase方法&#xff0c;测试例子如下所示&#xff1a; //测试用例 struct MyStruct {int a;int b; }; std::vector<MyStruct> spotInfo; spotInfo.push_back({ 1,2 }); spotInfo.push_back({ 3,4 }); spotInfo.push_back({…