【C++】模版

news2025/6/18 16:06:42

在这里插入图片描述

目录

  • 一、泛型编程
  • 二、函数模板
    • 2.1 函数模板概念
    • 2.2 函数模板格式
    • 2.3 函数模板的原理
    • 2.4 函数模板的实例化
    • 2.5 模板参数的匹配原则
  • 三、类模板
    • 3.1 类模板的定义格式
    • 3.2 类模板的实例化
  • 四、非类型模板参数
  • 五、模板的特化
    • 5.1 概念
    • 5.2 函数模板特化
    • 5.3 类模板特化
      • 5.3.1 全特化
      • 5.3.2 偏特化
      • 5.3.3 类模板特化应用示例
  • 六、模板分离编译
    • 6.1 什么是分离编译
    • 6.2 模板的分离编译
    • 6.3 解决方法
  • 七、模板总结
  • 结尾

一、泛型编程

如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{
	int temp = left;
	left = right;
	right = temp;
}

void Swap(double& left, double& right)
{
	double temp = left;
	left = right;
	right = temp;
}

void Swap(char& left, char& right)
{
	char temp = left;
	left = right;
	right = temp;
}
......

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢

如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

在这里插入图片描述


二、函数模板

2.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。


2.2 函数模板格式

template<typename T1, typename T2,…,typename Tn>
返回值类型 函数名(参数列表){}

template<typename T>

void Swap(T& left, T& right)
{
	T temp = left;
	left = right;
	right = temp;
}

注意typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)


2.3 函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器
在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。


2.4 函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。
1. 隐式实例化:让编译器根据实参推演模板参数的实际类型

int main()
{
	int a1 = 10, a2 = 20;
	double d1 = 10.0, d2 = 20.0;
	Add(a1, a2);
	Add(d1, d2);
	/*
	该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
	通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
	编译器无法确定此处到底该将T确定为int 或者 double类型而报错
	注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
	Add(a1, d1);
	*/
	// 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化
	Add(a1, (int)d1);
	Add((double)a1, d1);

	return 0;
}

2. 显式实例化:在函数名后的<>中指定模板参数的实际类型

template<class T>
T Add(const T& left, const T& right)
{
	return left + right;
}

int main()
{
	int a = 10;
	double b = 20.0;
	// 显式实例化

	Add<int>(a, b);
	return 0;
}

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。


2.5 模板参数的匹配原则

  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
// 专门处理int的加法函数
int Add(int left, int right)
{
	return left + right;
}

// 通用加法函数
template<class T>
T Add(T left, T right)
{
	return left + right;
}

int main()
{
	Add(1, 2); // 与非模板函数匹配,编译器不需要特化
	Add<int>(1, 2); // 调用编译器特化的Add版本

	return 0;
}
  1. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板
// 专门处理int的加法函数
int Add(int left, int right)
{
	return left + right;
}

// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
	return left + right;
}

int main()
{
	Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
	Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数

	return 0;
}
  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

三、类模板

3.1 类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
	// 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
	Vector(size_t capacity = 10)
		: _pData(new T[capacity])
		, _size(0)
		, _capacity(capacity)
	{}
	// 使用析构函数演示:在类中声明,在类外定义。
	~Vector();
	void PushBack(const T& data)void PopBack()// ...
		size_t Size() { return _size; }
	T& operator[](size_t pos)
	{
		assert(pos < _size);
		return _pData[pos];
	}
private:
	T* _pData;
	size_t _size;
	size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
	if (_pData)
		delete[] _pData;
	_size = _capacity = 0;
}

3.2 类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;

四、非类型模板参数

模板参数分类类型形参与非类型形参。
类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。
非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

namespace aj
{
	// 定义一个静态数组
	template<class T, size_t N>
	class Array
	{
		T& operator[](size_t position)
		{
			return _arr[position];
		}

		const T& operator[](size_t position)
		{
			return _arr[position];
		}

		bool empty()
		{
			return _size == 0;
		}

		size_t size()
		{
			return _size;
		}
	private:
		T _arr[N];
		size_t _size;
	};
}

注意

  1. 只有整形类型的对象可以作为非类型模版参数,浮点数、类对象以及字符串是不允许作为非类型模板参数的。
    在这里插入图片描述

  2. 非类型的模板参数必须在编译期就能确认结果。

五、模板的特化

5.1 概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

class Date
{
public:
	// 获取某年某月的天数
	int GetMonthDay(int year, int month)
	{
		static int MonthDay[13] = { 0,31,28,31,30,31,30,31,31,30,31,30,31 };
		if (month == 2 && ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0))
		{
			return 29;
		}
		return MonthDay[month];
	}

	// 全缺省的构造函数
	Date(int year = 1970, int month = 1, int day = 1)
		:_year(year)
		, _month(month)
		, _day(day)
	{}


	bool operator<(const Date& d)const
	{
		if (_year < d._year)
		{
			return true;
		}
		else if (_year == d._year && _month < d._month)
		{
			return true;
		}
		else if (_year == d._year && _month == d._month && _day < d._day)
		{
			return true;
		}
		else
		{
			return false;
		}
	}
private:
	int _year;
	int _month;
	int _day;
};

template<class T>
bool Less(const T& t1, const T& t2)
{
	return t1 < t2;
}
	

int main()
{
	cout << Less(520, 521) << endl;		    // 结果正确

	Date date1(2023, 8, 8);
	Date date2(2023, 6, 6);
	cout << Less(date1, date2) << endl;		// 结果正确

	Date* p1 = new Date(2023, 8, 8);
	Date* p2 = new Date(2023, 6, 6);

	cout << Less(*p1, *p2) << endl;			// 结果正确

	// 这里我们需要比较的是指针指向的内容,而不是指针本身
	// 并且由于Date是new出来的,并不能保证先new的对象地址一定小
	// 所以比较的结果是随机的,并不是我们所需要的结果
	cout << Less(p1, p2) << endl;			// 结果错误


	return 0;
}

在这里插入图片描述

可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误。

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化。

5.2 函数模板特化

函数模板的特化步骤:

  1. 必须要先有一个基础的函数模板
  2. 关键字template后面接一对空的尖括号<>
  3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
  4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
class Date
{
public:
	// 获取某年某月的天数
	int GetMonthDay(int year, int month)
	{
		static int MonthDay[13] = { 0,31,28,31,30,31,30,31,31,30,31,30,31 };
		if (month == 2 && ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0))
		{
			return 29;
		}
		return MonthDay[month];
	}

	// 全缺省的构造函数
	Date(int year = 1970, int month = 1, int day = 1)
		:_year(year)
		, _month(month)
		, _day(day)
	{}


	bool operator<(const Date& d)const
	{
		if (_year < d._year)
		{
			return true;
		}
		else if (_year == d._year && _month < d._month)
		{
			return true;
		}
		else if (_year == d._year && _month == d._month && _day < d._day)
		{
			return true;
		}
		else
		{
			return false;
		}
	}
private:
	int _year;
	int _month;
	int _day;
};

template<class T>
bool Less( T t1,  T t2)
{
	return t1 < t2;
}

// 特化
template<>
bool Less<Date*>(Date* t1, Date* t2)
{
	return *t1 < *t2;
}


int main()
{
	cout << Less(520, 521) << endl;		    // 结果正确

	Date date1(2023, 8, 8);
	Date date2(2023, 6, 6);
	cout << Less(date1, date2) << endl;		// 结果正确

	Date* p1 = new Date(2023, 8, 8);
	Date* p2 = new Date(2023, 6, 6);

	cout << Less(*p1, *p2) << endl;			// 结果正确

	// 这里p1和p2的类型为Date*
	// 那么调用Less函数时会调用特化后的版本,而不会再显示实例化
	cout << Less(p1, p2) << endl;			// 结果正确

	return 0;
}

注意一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

template<class T>
bool Less( T t1,  T t2)
{
	return t1 < t2;
}

// 特化
template<>
bool Less<Date*>(Date* t1, Date* t2)
{
	return *t1 < *t2;
}

// 直接给出
bool Less(Date* t1, Date* t2)
{
	return *t1 < *t2;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。


5.3 类模板特化

5.3.1 全特化

全特化即是将模板参数列表中所有的参数都确定化。

template<class T1, class T2>
class Class
{
public:
	Class()
	{
		cout << "Class(T1, T2)" << endl;
	}

private:
	T1 _t1;
	T2 _t2;
};

template<>
class Class<double , int>
{
public:
	Class()
	{
		cout << "Class(double, int)" << endl;
	}

private:
	double _t1;
	int _t2;
};

int main()
{
	Class<int, int> c1;
	Class<double, int> c2;
	return 0;
}

在这里插入图片描述

5.3.2 偏特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

template<class T1, class T2>
class Class
{
public:
	Class()
	{
		cout << "Class(T1, T2)" << endl;
	}

private:
	T1 _t1;
	T2 _t2;
};

template<class T1>
class Class<double, T1>
{
public:
	Class()
	{
		cout << "Class(double, T1)" << endl;
	}

private:
	double _t1;
	int _t2;
};

int main()
{
	Class<int, int> c1;
	Class<double, int> c2;

	return 0;
}

在这里插入图片描述

偏特化有以下两种表现方式:

  • 部分特化
    将模板参数类表中的一部分参数特化
template<class T1, class T2>
class Class
{
public:
	Class()
	{
		cout << "Class<T1, T2>" << endl;
	}

private:
	T1 _t1;
	T2 _t2;
};


// 将第一个参数特化为double
template<class T1>
class Class<double, T1>
{
public:
	Class()
	{
		cout << "Class<double, T1>" << endl;
	}

private:
	double _t1;
	T1 _t2;
};
  • 参数更进一步的限制
    偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本
template<class T1 , class T2>
class Class
{
public:
	Class()
	{
		cout << "Class<T1, T2>" << endl;
	}

private:
	T1 _t1;
	T2 _t2;
};

template<class T1>
class Class<double,T1>
{
public:
	Class()
	{
		cout << "Class<double, T1>" << endl;
	}

private:
	double _t1;
	T1 _t2;
};

template<class T1, class T2>
class Class<T1* , T2*>
{
public:
	Class()
	{
		cout << "Class<T1*, T2*>" << endl;
	}

private:
	T1 _t1;
	T2 _t2;
};

template<class T1, class T2>
class Class<T1&, T2&>
{
public:
	Class(const T1& t1 , const T2& t2)
		:_t1(t1)
		,_t2(t2)
	{
		cout << "Class<T1& ,T2&>" << endl;
	}

private:
	const T1& _t1;
	const T2& _t2;
};


int main()
{
	Class<int, int> c1;              // 调用基本的类模版
	Class<double, int> c2;			 // 调用特化double的类模版
	Class<double*, double*> c3;		 // 调用特化为指针版本的类模版
	Class<int&, int&> c4(1,2);	     // 调用特化为引用版本的类模版

	return 0;
}

在这里插入图片描述

5.3.3 类模板特化应用示例

有如下专门用来按照小于比较的类模板Less:

#include <algorithm>
#include <vector>

class Date
{
public:
	// 获取某年某月的天数
	int GetMonthDay(int year, int month)
	{
		static int MonthDay[13] = { 0,31,28,31,30,31,30,31,31,30,31,30,31 };
		if (month == 2 && ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0))
		{
			return 29;
		}
		return MonthDay[month];
	}

	// 全缺省的构造函数
	Date(int year = 1970, int month = 1, int day = 1)
		:_year(year)
		, _month(month)
		, _day(day)
	{}


	bool operator<(const Date& d)const
	{
		if (_year < d._year)
		{
			return true;
		}
		else if (_year == d._year && _month < d._month)
		{
			return true;
		}
		else if (_year == d._year && _month == d._month && _day < d._day)
		{
			return true;
		}
		else
		{
			return false;
		}
	}
private:
	int _year;
	int _month;
	int _day;
};

template<class T>
struct Less
{
	bool operator()(const T& t1, const T& t2)const
	{
		return t1 < t2;
	}
};

int main()
{
	Date d1(2000, 1, 1);
	Date d2(1949, 10, 1);
	Date d3(2023, 8, 8);

	vector<Date> v;
	v.push_back(d1);
	v.push_back(d2);
	v.push_back(d3);

	sort(v.begin(), v.end(), Less<Date>());

	Date* p1 = new Date(2000, 1, 1);
	Date* p2 = new Date(1949, 10, 1);
	Date* p3 = new Date(2023, 8, 8);

	vector<Date*> vv;

	vv.push_back(p1);
	vv.push_back(p2);
	vv.push_back(p3);
	sort(vv.begin(), vv.end(), Less<Date*>());

	return 0;
}

在这里插入图片描述

上述代码使用sort排序Date对象时可以正常完成,但是由于后面Date对象是new出来的,并不会因为先new地址就会小,所以使用sort排序时,会按照指针的大小进行排序,那么结果就是错误的。可以使用类模版特化来解决该问题。


template<class T>
struct Less
{
	bool operator()(const T& t1, const T& t2)const
	{
		return t1 < t2;
	}
};

// 只要是Date类型的指针就解引用再进行比较
template<>
struct Less<Date*>
{
	bool operator()(Date* t1, Date* t2)const
	{
		return *t1 < *t2;
	}
};

// 只要是指针就进行解引用再进行比较
template<class T>
struct Less<T*>
{
	bool operator()(T* t1,T* t2)const
	{
		return *t1 < *t2;
	}
};

六、模板分离编译

6.1 什么是分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。


6.2 模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// a.h
template<class T>
T Add(const T& left, const T& right);

// a.cpp
template<class T>
T Add(const T& left, const T& right)
{
	return left + right;
}
// main.cpp
#include"a.h"
int main()
{
	Add(1, 2);
	Add(1.0, 2.0);
	return 0;
}

在这里插入图片描述


6.3 解决方法

  1. 将声明和定义放到一个文件 “xxx.hpp” 里面或者xxx.h其实也是可以的。推荐使用这种。
  2. 模板定义的位置显式实例化。这种方法不实用,不推荐使用。

七、模板总结

【优点】

  1. 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生
  2. 增强了代码的灵活性

【缺陷】

  1. 模板会导致代码膨胀问题,也会导致编译时间变长
  2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误

结尾

如果有什么建议和疑问,或是有什么错误,大家可以在评论区中提出。
希望大家以后也能和我一起进步!!🌹🌹
如果这篇文章对你有用的话,请大家给一个三连支持一下!!🌹🌹
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1585255.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【火猫TV】欧冠:拉菲尼亚梅开二度,却在出售名单中

欧冠淘汰赛首回合&#xff0c;巴萨在客场3比2击败大巴黎&#xff0c;取得一个球的领先优势&#xff0c;双方将会在下周进行生死战。本场比赛巴萨虽然率先破门&#xff0c;却被大巴黎死死压制&#xff0c;如果不是大巴黎锋线效率一般&#xff0c;球队很可能会在客场输球。本场比…

代码随想录-算法训练营day04【链表02:两两交换链表中的节点、删除链表的倒数第N个节点、链表相交、环形链表II】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客 第二章 链表part02● day 1 任务以及具体安排&#xff1a;https://docs.qq.com/doc/DUG9UR2ZUc3BjRUdY ● day 2 任务以及具体安排&#xff1a;https://docs.qq.com/doc/DUGRwWXNOVEpyaVpG ● day 3 任务以及具体安排…

华为2024年校招实习硬件-结构工程师机试题(四套)

华为2024年校招&实习硬件-结构工程师机试题&#xff08;四套&#xff09; &#xff08;共四套&#xff09;获取&#xff08;WX: didadidadidida313&#xff0c;加我备注&#xff1a;CSDN 华为硬件结构题目&#xff0c;谢绝白嫖哈&#xff09; 结构设计工程师&#xff0c;结…

1. VirtualBox安装CentOS

安装 VirtualBox 地址:https://www.virtualbox.org/wiki/Downloads 版本: 6.1和7.0+版本都可以 安装: windows上安装需要admin权限,右键菜单选中 “Run as administrator” 安装 CentOS 6.10 地址:https://vault.centos.org/6.10/isos/x86_64/ 版本: 如果不需要GUI,选择…

竹云董事长在第十二届中国电子信息博览会开幕峰会暨全国“专精特新”电子信息行业论坛作主题演讲

2024年4月9日&#xff0c;第十二届中国电子信息博览会开幕峰会&#xff08;CITE2024&#xff09;暨全国“专精特新”电子信息行业论坛在深圳会展中心盛大举行。 本届电博会开幕峰会以“追求卓越&#xff0c;数创未来”为主题&#xff0c;特邀百位专家学者、行业精英、知名投资人…

金三银四面试题(十九):MySQL中的锁

在MySQL中&#xff0c;锁是非常重要的&#xff0c;特别是在多用户并发访问数据库的环境中&#xff0c;因此也是面试中常问的话题。 请说说数据库的锁&#xff1f; 关于MySQL 的锁机制&#xff0c;可能会问很多问题&#xff0c;不过这也得看面试官在这方面的知识储备。 MySQL …

新版HI3559AV100开发注意事项(三)

新版HI3559AV100开发注意事项&#xff08;三&#xff09; 十九、用的sdk是Hi3559V200_MobileCam_SDK_V1.0.1.5 播放AAC音频文件&#xff0c;adec->ao;adec的初始化里面包括了aaclc解码器的注册&#xff0c;可是在HI_MPI_ADEC_RegisterDecoder(&s32Handle, &stAac);…

43-技术演进(上):虚拟化技术演进之路

在Kubernetes集群中部署IAM应用&#xff0c;会涉及到一些重要的云原生技术&#xff0c;例如Docker、Kubernetes、微服务等。另外&#xff0c;云原生架构中还包含了很多其他的技术 因为这一讲涉及的技术栈很多&#xff0c;所以我会把重点放在演进过程上&#xff0c;不会详细介…

面试算法-171-翻转二叉树

题目 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1] 解 class Solution {public TreeNode invertTree(TreeNode root) {if (root n…

企业常用命令(touch/别名/重定向/Linux字符)7368字详谈

企业高薪思维&#xff1a; 企业&#xff08;工作/学习中&#xff09;操作前备份&#xff0c;操作后检查 最小化原则 1.安装软件最小化 2.参数选项最小化 3.登录用户权限最小化&#xff08;不用root登录&#xff09; 要想成功/学习上/工作上 永远比别人多做一点点&#xff08;别…

冯喜运:4.11黄金今日还会下跌吗?黄金原油最新行情分析

【 黄金行情趋势分析】&#xff1a;周三(4月10日)&#xff0c;强于预期的CPI通胀数据削弱对美国提前降息的预期&#xff0c;美元和国债收益率走强&#xff0c;现货黄金大跌近20美元。周四(4月11日)亚市早盘&#xff0c;金价交投在2335美元/盎司附近。周三&#xff0c;在美国通胀…

使用 EFCore 和 PostgreSQL 实现向量存储及检索

随着 ChatGPT 的兴起及其背后的 AIGC 产业不断升温,向量数据库已成为备受业界瞩目的领域。FAISS、Milvus、Pinecone、Chroma、Qdrant 等产品层出不穷。市场调研公司 MarketsandMarkets 的数据显示,全球向量数据库市场规模预计将从 2020 年的 3.2 亿美元增长至 2025 年的 10.5…

微服务项目sc2024父工程

1.基础版本要求 jdk 17maven 3.9mysql 8.0spring boot 3.2.0spring cloud 2023.0.0spring cloud alibaba 2022.0.0.0-RC2 2.创建父工程 2.1.字符编码 2.2.java编译版本 2.3.注解生效激活 2.4.File Type过滤 2.5.父工程中只保留pom文件,其余的删了 3.父工程pom文件 <?xm…

一辆汽车的节拍时间是怎样的?

节拍时间&#xff0c;又称 takt time&#xff0c;是德语中“节奏”的意思。在汽车制造业中&#xff0c;它指的是按照客户需求和生产计划&#xff0c;生产一辆汽车所需的时间。这个时间是固定的&#xff0c;它决定了生产线上每个工序的操作速度和节奏&#xff0c;是生产线上所有…

Vue中SourceMap的使用方法详解

目录 一、概述 二、使用方法 三、生成SourceMap 四、优化 五、结语 一、概述 Vue.js是一套构建用户界面的渐进式框架&#xff0c;通过HTML模板或者直接写render函数可以快速开发单页应用。在开发过程中&#xff0c;很多时候我们需要调试代码&#xff0c;追踪错误。Vue官方…

一键排除烦恼!苹果手机怎么恢复出厂设置

当你的苹果手机遇到了一系列问题&#xff0c;或者你打算将手机出售或转让给他人时&#xff0c;恢复出厂设置是一种常见的解决方案。这一过程可以将手机恢复到刚购买时的状态&#xff0c;清除所有个人数据和设置&#xff0c;以确保隐私安全和设备的顺畅运行。 苹果手机的恢复出…

计算机网络-OSPF的其它特性

一、路由器对LSA的处理原则 运行链路状态路由协议的路由器之间首先会建立一个协议的邻居关系&#xff0c;然后彼此之间开始交互LSA&#xff08;Link State Advertisement&#xff0c;链路状态通告&#xff09;。LSA是OSPF进行路由计算的关键依据。链路状态类型、链路状态ID、通…

MySQL - 深入MySQL索引的秘密(一)

1. 如果没有任何索引,数据库是如何根据查询语句搜索数据的? 在磁盘文件中,数据页之间是组成双向链表的,然后数据页内部的数据行是组成单向链表的,而且数据行是根据主键从小到大排序的。然后每个数据页里都会有一个页目录,里面根据数据行的主键存放了一个目录,同时数据行…

LLM 推理优化探微 (4) :模型性能瓶颈分类及优化策略

编者按&#xff1a; 在人工智能浪潮袭卷全球的大背景下&#xff0c;进一步提升人工智能模型性能&#xff0c;满足更多应用需求已经刻不容缓。如何优化模型延迟和吞吐量&#xff0c;成为了业界亟待解决的重要问题。 我们今天为大家带来的这篇文章&#xff0c;其观点为&#xff1…

uniapp 小程序获取WiFi列表

<template><view ><button click"getWifiList">获取WiFi列表</button><scroll-view:scroll-top"scrollTop"scroll-yclass"content-pop"><viewclass"itemInfo"v-for"(item, index) in wifiList&…