C++设计模式:单例模式(十)

news2025/6/24 18:29:36
1、单例设计模式
  • 单例设计模式,使用的频率比较高,整个项目中某个特殊的类对象只能创建一个

  • 并且该类只对外暴露一个public方法用来获得这个对象。

  • 单例设计模式又分懒汉式和饿汉式,同时对于懒汉式在多线程并发的情况下存在线程安全问题

    • 饿汉式:类加载的准备阶段就会将static变量、代码块进行实例化,最后只暴露一个public方法获得实例对象。

    • 懒汉式:当需要用到的时候再去加载这个对象。这时多线程的情况下可能存在线程安全问题

  • 对于饿汉式这里不做具体的解释,本节只讨论多线程与懒汉式的线程安全问题

2、单线程下的懒汉模式
2.1、单例对象的创建:
  • 将类指针对象进行静态私有化,并且在类外初始化这个对象为空;静态能保证的是这个对象属于这个类不属于任何一个对象

  • 私有化空构造器防止可以实例化对象

  • 对外暴露一个public方法获取该对象,如果在获取时发现该对象为空,那么进行实例化,否则直接返回

  • 因此可以看到实例化只有一次,多次获取到的对象的地址属于同一个

  • 可以通过内部类的方式进行析构

    • 首先在单例类内部进行私有化一个内部类
    • 对外暴露的public获取instance的对象接口在new实例化对象的时候创建一个内部类静态成员
    • 内部类静态成员的好处是只有一份
    • 当作用域结束时内部类就会负责析构掉主类的静态成员对象
class Single_Instance {
private:
    static Single_Instance *instance;
    Single_Instance() {

    }
    Single_Instance(const Single_Instance & s){

    }
    class inner_class {
    public:
        ~inner_class(){
            if(Single_Instance::instance){
                delete Single_Instance::instance;
                Single_Instance::instance = NULL;
                std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;
            }
        }
    };
public:
    static Single_Instance *get_Instance(){
        if(instance == NULL){
            instance = new Single_Instance();
            static inner_class innerClass;
        }
        return instance;
    }
    void func(){
        std::cout << "func(), &instance = " << instance << std::endl;
    }
};
Single_Instance *Single_Instance::instance = NULL;
3、单例模式与多线程
  • 单例模式的对象可能会被多个线程使用,但是又必须保证这个单例的对象只有一份

  • 不能重复创建、也必须保证这个对象在多线程使用过程中不会因为创建而产生数据安全问题,即多线程抢占的创建这一个对象

class Single_Instance {
private:
    static Single_Instance *instance;
    Single_Instance() {

    }
    Single_Instance(const Single_Instance & s){

    }
    class inner_class {
    public:
        ~inner_class(){
            if(Single_Instance::instance){
                delete Single_Instance::instance;
                Single_Instance::instance = NULL;
                std::cout << "inner_class::~inner_class(), 析构Single_Instance::instance对象" << std::endl;
            }
        }
    };
public:
    static Single_Instance *get_Instance(){
        if(instance == NULL){
            instance = new Single_Instance();
            static inner_class innerClass;
        }
        return instance;
    }
    void func(){
        std::cout << "func(), &instance = " << instance << std::endl;
    }
};
Single_Instance *Single_Instance::instance = NULL;

void thread_func()
{
    std::cout << "子线程开始执行了" << std::endl;
    Single_Instance *instance = Single_Instance::get_Instance();
    std::cout << "thread_func, &instance = " << instance << std::endl;
    std::cout << "子线程执行结束了" << std::endl;
}

void test2()
{
    std::thread mythread1(thread_func);
    std::thread mythread2(thread_func);
    std::thread mythread3(thread_func);
    std::thread mythread4(thread_func);
    mythread1.join();
    mythread2.join();
    mythread3.join();
    mythread4.join();
}

在这里插入图片描述

可以看到实例化不止一个单例对象,这一现象违反了单例的思想,因此需要在多线程抢占创建时进行互斥(mutex)

3.1、解决方案(一)
  • 使用互斥量的方式,对线程访问获取对象进行阻塞
  • 但是不难发现问题,其实这个对象只创建一次,之后的访问单纯的获取这个对象也要进行加锁逐个排队访问临界区,这一现象导致效率极低
std::mutex mutex_lock;
static Single_Instance *get_Instance(){
    std::unique_lock<std::mutex> uniqueLock(mutex_lock);
    if(instance == NULL){
        instance = new Single_Instance();
        static inner_class innerClass;
    }
    return instance;
}
3.2、解决方式(二)

双重检查机制(DCL)进行绝对安全解决

  • 双重检查:
    • 首先在锁外面加入一个if判断,判断这个对象是否存在,如果存在就没有必要上锁创建,直接返回即可
    • 如果对象不存在,首选进行加锁,然后在if判断对象是否存在,这个if的意义在于当多个线程阻塞在mutex锁头上时
    • 突然有一个线程1创建好了,那么阻塞在mutex锁头上的线程2、3、4…都不用再继续创建,因此在加一个if判断

这里还需要解释一下volatile关键字:

  • volatile关键字的作用是防止cpu指令重排序,重排序的意思就是干一件事123的顺序,cpu可能重排序为132

  • 为什么需要防止指令重排序,因为对象的new过程分为三部曲:

    (1)分配内存空间、(2)执行构造方法初始化对象、(3)将这个对象指向这个空间;

    由于程序运行CPU会进行指令的重排序,如果执行的指令是132顺序,A线程执行完13之后并没有完成对象的初始化、而这时候转到B线程;B线程认为对象已经实例化完毕、其实对象并没有完成初始化!产生错误

static Single_Instance *get_Instance(){
    if(instance == NULL){
        std::unique_lock<std::mutex> uniqueLock(mutex_lock);
        if(instance == NULL){
            instance = new Single_Instance();
            static inner_class innerClass;
        }
    }
    return instance;
}
3.3、解决方案(三)
  • 但volatile关键字并不跨平台,而在C++11中提供了一种新的标准来解决这一问题,并且跨平台
  • 可以通过atomic原子类来保证
    • 将对象声明为原子类的指针
    • std::atomic_thread_fence(std::memory_order_acquire):获取内存屏蔽的屏障,关闭reorder
    • std::atomic_thread_fence(std::memory_order_release):将instance对象创建完毕之后进行解开内存屏障
    • instance.store(tmp, std::memory_order_relaxed):将对象store到内存中。
  • Atomic类主要通过CAS锁来实现的,具体点击这里
class Single_Instance {
private:
    std::atomic<Single_Instance*> instance;
    Single_Instance() {

    }
    Single_Instance(const Single_Instance & s){

    }
public:
    Single_Instance *get_Instance(){
        Single_Instance *tmp = instance.load(std::memory_order_relaxed);
        std::atomic_thread_fence(std::memory_order_acquire);
        if(tmp == NULL){
            std::unique_lock<std::mutex> uniqueLock(mutex_lock);
            tmp = instance.load(std::memory_order_relaxed);
            if(tmp == NULL){
                tmp = new Single_Instance();
                std::atomic_thread_fence(std::memory_order_release);
                instance.store(tmp, std::memory_order_relaxed);
            }
        }
        return tmp;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1584390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《深入Linux内核架构》第2章 进程管理和调度 (2)

目录 2.4 进程管理相关的系统调用 2.4.1 进程复制 2.4.2 内核线程 2.4.3 启动新程序 2.4.4 退出进程 本专栏文章将有70篇左右&#xff0c;欢迎关注&#xff0c;订阅后续文章。 2.4 进程管理相关的系统调用 2.4.1 进程复制 1. _do_fork函数 fork vfork clone都最终调用_…

微信小程序转盘抽奖

场景&#xff1a; 在微信小程序里面开展抽奖活动使用转盘抽奖&#xff1b;类似下图&#xff08;图片来自百度&#xff09; 方法&#xff1a; 使用lukcy-canvas组件 在 微信小程序 中使用 | 基于 Js / TS / Vue / React / 微信小程序 / uni-app / Taro 的【大转盘 & 九宫…

【Qt踩坑】ARM 编译Qt5.14.2源码-QtWebEngine

1.下载源码 下载网站&#xff1a;Index of /new_archive/qt/5.14/5.14.2/single 2.QWebEngine相关依赖 sudo apt-get install flex libicu-dev libxslt-dev sudo apt-get install libssl-dev libxcursor-dev libxcomposite-dev libxdamage-dev libxrandr-dev sudo apt-get …

dyld: Library not loaded: @rpath/SDK.framework/SDK错误问题

关于导入三方SDK.framework之后&#xff0c;启动崩溃之后如下报错的解决方式: 截屏2020-10-14 上午9.55.09.png 在正常导入framework之后&#xff0c;做如图示操作&#xff0c; image.png 以上步骤之后&#xff0c;重新启动运行xcode&#xff0c;即可成功运行。

Harmony鸿蒙南向驱动开发-PIN

PIN即管脚控制器&#xff0c;用于统一管理各SoC的管脚资源&#xff0c;对外提供管脚复用功能。 基本概念 PIN是一个软件层面的概念&#xff0c;目的是为了统一对各SoC的PIN管脚进行管理&#xff0c;对外提供管脚复用功能&#xff0c;配置PIN管脚的电气特性。 SoC&#xff08;…

ChatGPT在地学,自然科学等了领域应用教程

原文链接&#xff1a;ChatGPT在地学&#xff0c;自然科学等了领域应用教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247600722&idx2&sn291ea8c935b1d9b1459170baa9057053&chksmfa820bb5cdf582a39086e5ee9596ab020784fa78ac7dc49ced4969e28817c3f0…

MAC: 自己制作https的ssl证书(自己签发免费ssl证书)(OPENSSL生成SSL自签证书)

MAC: 自己制作https的ssl证书(自己签发免费ssl证书)(OPENSSL生成SSL自签证书) 前言 现在https大行其道, ssl又是必不可少的环节. 今天就教大家用开源工具openssl自己生成ssl证书的文件和私钥 环境 MAC电脑 openssl工具自行搜索安装 正文 1、终端执行命令 //生成rsa私钥&…

探索艺术的新领域——3D线上艺术馆如何改变艺术作品的传播方式

在数字化时代的浪潮下&#xff0c;3D线上艺术馆成为艺术家们展示和传播自己作品的新平台。不仅突破了地域和物理空间的限制&#xff0c;还提供了全新的互动体验。 一、无界限的展示空间&#xff1a;艺术家的新展示平台 3D线上艺术馆通过数字化技术&#xff0c;为艺术家提供了一…

虚拟货币:数字金融时代的新工具

在数字化时代的到来之后&#xff0c;虚拟货币逐渐成为了一种广为人知的金融工具。虚拟货币是一种数字化的资产&#xff0c;它不像传统货币那样由政府或中央银行发行和监管。相反&#xff0c;虚拟货币通过密码学技术和分布式账本技术来实现去中心化的发行和交易。 虚拟货币的代…

机器学习和深度学习-- 李宏毅(笔记与个人理解)Day10

Day 10 Genaral GUidance training Loss 不够的case Loss on Testing data over fitting 为什么over fitting 留到下下周哦~~ 期待 solve CNN卷积神经网络 Bias-Conplexiy Trade off cross Validation how to split? N-fold Cross Validation mismatch 这节课总体听下来比较…

大厂MVP技术JAVA架构师培养

课程介绍 这是一个很强悍的架构师涨薪计划课程&#xff0c;课程由专家级MVP讲师进行教学&#xff0c;分为是一个章节进行分解式面试及讲解&#xff0c;不仅仅是面试&#xff0c;更像是一个专业的架构师研讨会课程。课程内容从数据结构与算法、Spring Framwork、JVM原理、 JUC并…

环信 IM 客户端将适配鸿蒙 HarmonyOS

自华为推出了自主研发操作系统鸿蒙 HarmonyOS 后&#xff0c;国内许多应用软件开始陆续全面兼容和接入鸿蒙操作系统。环信 IM 客户端计划将全面适配统鸿蒙 HarmonyOS &#xff0c;助力开发者快速实现社交娱乐、语聊房、在线教育、智能硬件、社交电商、在线金融、线上医疗等广泛…

代码学习记录40---动态规划

随想录日记part40 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.04.10 主要内容&#xff1a;今天开始要学习动态规划的相关知识了&#xff0c;今天的内容主要涉及&#xff1a; 买卖股票的最佳时机加强版。 123.买卖股票的最佳时机III 188.买卖股票的最佳时机…

代码随想录--数组--有序数组的平方

题目 给你一个按 非递减顺序 排序的整数数组 nums&#xff0c;返回 每个数字的平方 组成的新数组&#xff0c;要求也按 非递减顺序 排序。 示例 1&#xff1a; 输入&#xff1a;nums [-4,-1,0,3,10] 输出&#xff1a;[0,1,9,16,100] 解释&#xff1a;平方后&#xff0c;数组…

【CSS】一篇文章讲清楚screen、window和html元素的位置:top、left、width、height

一个Web网页从内到外的顺序是&#xff1a; 元素div,ul,table... → 页面body → 浏览器window → 屏幕screen 分类详情屏幕screen srceen.width - 屏幕的宽度 screen.height - 屏幕的高度&#xff08;屏幕未缩放时&#xff0c;表示屏幕分辨率&#xff09; screen.availLeft …

云手机解决海外社媒运营的诸多挑战

随着海外社交媒体运营的兴起&#xff0c;如何有效管理多个账户成为了一项挑战。云手机作为一种新兴的解决方案&#xff0c;为海外社媒运营带来了前所未有的便利。 云手机的基本原理是基于云计算和虚拟化技术&#xff0c;允许用户在物理手机之外创建和使用多个虚拟手机。这种创新…

【开发篇】十三、JVM基础参数设置与垃圾回收器的选择

文章目录 1、-Xmx 和 –Xms2、-XX:MaxMetaspaceSize 和 –XX:MetaspaceSize3、-Xss4、不建议改的参数5、其他参数6、选择GC回收器的调试思路7、CMS的并发模式失败现象的解决8、调优案例 GC问题解决方式&#xff1a; 优化JVM基础参数&#xff0c;避免频繁Full GC减少对象的产生…

代码随想录--数组--二分查找

数组理论基础 数组是存放在连续内存空间上的相同类型数据的集合。 数组可以方便的通过下标索引的方式获取到下标下对应的数据。 举一个字符数组的例子&#xff0c;如图所示&#xff1a; 需要两点注意的是 数组下标都是从0开始的。 数组内存空间的地址是连续的。 正是因为数…

【漏洞复现】WordPress LayerSlider插件SQL注入漏洞复现

声明&#xff1a;亲爱的读者&#xff0c;我们诚挚地提醒您&#xff0c;Aniya网络安全的技术文章仅供个人研究学习参考。任何因传播或利用本实验室提供的信息而造成的直接或间接后果及损失&#xff0c;均由使用者自行承担责任。Aniya网络安全及作者对此概不负责。如有侵权&#…

高质量数据赋能大模型应用落地,景联文科技提供海量AI大模型数据

随着人工智能技术的迅猛进步&#xff0c;AI算法持续创新突破&#xff0c;模型的复杂度不断攀升&#xff0c;呈现出爆炸性的增长态势。数据的重要性愈发凸显&#xff0c;已然成为AI大模型竞争的核心要素。 Dimensional Research的全球调研报告显示&#xff0c;72%的受访者认为&a…