AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用

news2025/6/26 21:17:28

以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑

AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用 (qq.com)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247560456&idx=4&sn=ff3fd70367025aea8aba8ae6616ec6aa&chksm=ce6507e3f9128ef51da285b10bf2715db967df498766f8d1c191aa7a0eadfcce2fdfc6794054&token=212758782&lang=zh_CN#rd

专题一、开启大模型

1、开启大模型

1)大模型的发展历程与最新功能

2)大模型的强大功能与应用场景

3)国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)

4)如何优雅使用大模型

案例1.1:开启不同平台的大模型

案例1.2:GPT不同版本的使用

案例1.3:大模型文件上传和处理

专题二、基于ChatGPT大模型提问框架

2、提问框架(提示词、指令)

1)专业大模型提示词,助你小白变专家

2)超实用的通用提示词模板

3)GPT store(GPT商店产品)及高级提问技巧

案例2.1:设定角色与投喂规则

案例2.2:行业专家指令合集

案例2.3:角色扮演与不同角度提问

案例2.4:分步提问与上下文关联

案例2.5:经典提问框架练习,提升模型效率

专题三、基于ChatGPT大模型的论文助手

3、基于AI大模型的论文助手

案例3.1:大模型论文润色中英文指令大全

案例3.2:使用大模型进行论文润色

案例3.3:使用大模型对英文文献进行搜索

案例3.4:使用大模型对英文文献进行问答和辅助阅读

案例3.5:使用大模型提取英文文献关键信息

案例3.6:使用大模型对论文进行摘要重写

案例3.7:使用大模型取一个好的论文标题

案例3.8:使用大模型写论文框架和调整论文结构

案例3.9:使用大模型对论文进行翻译

案例3.10:使用大模型对论文进行评论,辅助撰写审稿意见

案例3.11:使用大模型对论文进行降重

案例3.12:使用大模型查找研究热点

案例3.13:使用大模型对你的论文凝练成新闻和微信文案

案例3.14:使用大模型对拓展论文讨论

案例3.15:使用大模型辅助专著、教材、课件的撰写

专题四、基于ChatGPT大模型的数据清洗

4、基于ChatGPT的数据清洗

1)R语言和Python基础(勿需学会,能看懂即可)

2)数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例4.1:使用大模型指令随机生成数据

案例4.2:使用大模型指令读取数据

案例4.3:使用大模型指令进行数据清洗

案例4.4:使用大模型指令对农业气象数据进行预处理

案例4.5:使用大模型指令对生态数据进行预处理

专题五、基于ChatGPT大模型的统计分析

5、基于AI大模型的统计分析

1)统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例5.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例5.2:使用大模型进行t检验、F检验和卡方检验

案例5.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

图片

专题六、基于ChatGPT的经典统计模型

6、基于AI大模型的经典统计模型构建

案例6.1:基于AI辅助构建的混合线性模型在生态学中应用

案例6.2:基于AI辅助的全球尺度Meta分析及诊断、绘图

案例6.3:基于AI辅助的生态环境数据结构方程模型构建

图片

专题七、基于ChatGPT的优化算法

7、基于AI大模型的频率派和贝叶斯派优化算法

案例7.1:最小二乘法优化模型参数优化

案例7.2:遗传算法、差分进化算法参数优化

案例7.3:贝叶斯定理和贝叶斯优化算法

案例7.4:蒙特拉罗马尔科夫链MCMC进行参数优化

图片

专题八、基于ChatGPT大模型的机器学习

8、基于AI大模型的机器/深度学习

1)机器/深度学习

2)线性代数基础、特征值和特征向量

3)机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4)特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5)主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN

6)支持向量机、决策树、随机森林、XGBoost、AdaBoost、LightGBM、高斯过程

7)深度学习算法(神经网络、激活函数、交叉熵、优化器)

8)AI大模型的底层逻辑和算法结构(GPT1-GPT4)

9)卷积神经网络、长短期记忆网络(LSTM)

案例8.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例8.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例8.3:使用大模型指令构建降维模型

案例8.4:使用大模型指令构建聚类模型

案例8.5:使用大模型指令构建卷积神经网络

案例8.6:使用大模型指令构建LSTM模型进行气象时序预测

图片

图片

专题九、ChatGPT的二次开发

9、基于AI大模型的二次开发

案例9.1:基于API构建自己的本地大模型

案例9.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例9.3:ChatGPT Store构建方法

专题十、基于ChatGPT大模型的科研绘图

1、基于AI大模型的科研绘图

1)使用大模型进行数据可视化

案例10.1:大模型科研绘图指定全集

案例10.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例10.3:使用大模型指令对图形进行修改

图片

图片

专题十一、基于ChatGPT大模型的GIS应用

11、基于AI大模型的GIS应用

1)R语言和Python空间数据处理主要方法

2)基于AI大模型训练降尺度模型

3)基于AI大模型处理矢量、栅格数据

4)基于AI大模型处理多时相netCDF4数据

案例11.1:使用大模型绘制全球地图

案例11.2:使用大模型处理NASA气象多时相NC数据

案例11.3:使用大模型绘制全球植被类型分布图

案例11.4:使用大模型栅格数据并绘制全球植被生物量图

案例11.5:使用大模型处理遥感数据并进行时间序列分析

案例11.6:使用不同插值方法对气象数据进行插值

案例11.7:使用大模型进行空间聚类分析

案例11.8:使用大模型构建机器学习进行空间预测

图片

专题十二、基于ChatGPT大模型的项目基金助手

12、基于AI大模型的项目基金助手

1)基金申请讲解

2)基因申请助手

案例12.1:使用大模型进行项目选题和命题

案例12.2:使用大模型进行项目书写作和语言润色

案例12.3:使用大模型进行项目书概念图绘制

专题十三、基于大模型的AI绘图

13基于大模型的AI绘图

GPT DALL.E、Midjourney等AI大模型生成图片讲解

1)AI画图指令套路和参数设定

案例13.1:使用大模型进行图像识别

案例13.2:使用大模型生成图像指令合集

案例13.3:使用大模型指令生成概念图

案例13.4:使用大模型指令生成地球氮循环概念图

案例13.5:使用大模型指令生成土壤概念图

案例13.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例13.7:使用大模型指令生成图片素材,从此不再缺图片素材

图片

图片

图片

关注科研技术平台获取更多资源

AI大模型引领未来智慧科研暨ChatGPT自然科学高级应用 (qq.com) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1584088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

修复 Windows 上的 PyTorch 1.1 github 模型加载权限错误

问题: 在 Windows 计算机上执行示例 github 模型加载时,生成了 master.zip 文件的权限错误(请参阅下面的错误堆栈跟踪)。 错误堆栈跟踪: 在[4]中:en2de = torch.hub.load(pytorch/fairseq, transformer.wmt16.en-de, tokenizer=moses, bpe=subword_nmt) 下载:“https://…

Linux网络的封包和拆包

一般使用socket 到令牌环网然后向上逐渐拆包 MTU:最大的传输单元 以太网:1500 mss:网络类型,线路,以及特性相关

SpringCloudAlibaba-概述(一)

目录地址: SpringCloudAlibaba整合-CSDN博客 记录SpringCloudAlibaba的整合过程 一、简单概述一下项目情况 项目主要有4个模块和4个微服务; 项目结构如下: mall:父工程 -- common:公共组件,存放公用的实…

Vue.js------vue基础

1. 能够了解更新监测, key作用, 虚拟DOM, diff算法2. 能够掌握设置动态样式3. 能够掌握过滤器, 计算属性, 侦听器4. 能够完成品牌管理案例 一.Vue基础_更新监测和key 1.v-for更新监测 目标:目标结构变化, 触发v-for的更新 情况1: 数组翻转情况2: 数组截取情况3…

专为玄学设计的7B大模型:依托10,000+高质量指令,全面覆盖玄学领域的大模型

前言 现如今,AI大模型已经无孔不入,连玄学领域也"在劫难逃"。前有新闻称数百万人正在"求神拜佛"般地与ChatGPT交流,后又有教堂聘请"AI传教士"协助神职人员进行宗教仪式。可以说,"科学的尽头就…

51单片机学习笔记16 小型直流电机和五线四相电机控制

51单片机学习笔记16 小型直流电机和五线四相电机控制 一、电机分类二、小型直流电机控制1. 简介2. 驱动芯片ULN2003D3. 代码实现dc_motor_utils.cmain.c 三、五线四相步进电机控制1. 步进电机工作原理2. 构造3. 极性区分4. 驱动方式5. 28BYJ-48步进电机(1&#xff0…

python统计分析——一般线性回归模型

参考资料:python统计分析【托马斯】 当我想用一个或多个其他的变量预测一个变量的时候,我们可以用线性回归的方法。 例如,当我们寻找给定数据集的最佳拟合线的时候,我们是在寻找让下式的残差平方和最小的参数(k,d): 其…

什么是容器安全,该怎么进行容器安全的检测防护

随着容器技术的迅速发展和普及,越来越多的企业开始采用容器化解决方案来优化应用部署、提高资源利用率和降低成本。然而,在对大规模部署和使用容器应用来提升业务系统开发速度的时候,大量的数据对象、多种安全风险都需要检测,容器…

头歌-机器学习 第11次实验 softmax回归

第1关:softmax回归原理 任务描述 本关任务:使用Python实现softmax函数。 相关知识 为了完成本关任务,你需要掌握:1.softmax回归原理,2.softmax函数。 softmax回归原理 与逻辑回归一样,softmax回归同样…

设计模式之迭代器模式(下)

3&#xff09;使用内部类实现迭代器 1.JDK中的迭代器示例 为了能够让迭代器可以访问到聚合对象中的数据&#xff0c;还可以将迭代器类设计为聚合类的内部类 package java.util;public abstract class AbstractList<E> extends AbstractCollection<E> implements…

Electron 桌面端应用的使用 ---前端开发

Electron是什么&#xff1f; Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 JavaScript 代码代码库并创建 在Windows上运行的跨平台应用 macOS和Linux——不需要本地开发 经验。 入门…

Adobe After Effects 2024 v24.3 macOS 视频合成及特效制作软件 兼容 M1/M2/M3

Adobe After Effects 是一款适用于视频合成及特效制作软件,是制作动态影像设计不可或缺的辅助工具,是视频后期合成处理的专业非线性编辑软件。 macOS 12.0及以上版本可用 应用介绍 Adobe After Effects简称 AE 是一款适用于视频合成及特效制作软件,是制作动态影像设计不可或缺…

Linux CentOS 安装 MySQL 服务教程

Linux CentOS 安装 MySQL 服务教程 1. 查看系统和GNU C库(glibc)版本信息 1.1 查询机器 glibc 版本信息 glibc&#xff0c;全名GNU C Library&#xff0c;是大多数Linux发行版中使用的C库&#xff0c;为系统和应用程序提供核心的API接口。在Linux系统中&#xff0c;特别是在…

Vue3 使用ElementUI 显示异常

element提供的样例不能正常显示&#xff0c;需要进行配置 1.npm install element-plus --save 2.main.js // main.ts import { createApp } from vue import ElementPlus from element-plus //全局引入 import element-plus/dist/index.css import App from ./App.vue const …

恶意软件现在扫描公司内部的网络是否存在严重漏洞

Palo Alto Networks 的专家发现 &#xff0c;攻击者最近越来越多地采用所谓的“扫描攻击”。此类攻击由恶意软件发起&#xff0c;旨在识别目标网络中的漏洞。 此外&#xff0c;大多数此类攻击的来源是安全网络中的合法设备。犯罪黑客是如何如此狡猾地欺骗计算机专家的呢&#…

Vue2(十五):replace属性、编程式路由导航、缓存路由组件、路由组件独有钩子、路由守卫、history与hash

一、router-link的replace属性 1、作用&#xff1a;控制路由跳转时操作浏览器历史记录的模式 2、浏览器的历史记录有两种写入方式&#xff1a;分别为push和replace&#xff0c;push是追加历史记录&#xff0c;replace是替换当前记录。路由跳转时候默认为push 3、如何开启repla…

Day20_学点儿JavaEE_Cookie、Session

0 会话技术简介 生活中会话 我&#xff1a; 小张&#xff0c;你会跳小苹果码&#xff1f; 小张&#xff1a; 会&#xff0c;怎么了&#xff1f; 我&#xff1a; 公司年会上要表演节目&#xff0c;你教教我把 小张&#xff1a;没问题&#xff0c;一顿饭而已。 我&#xff1a; …

面向对象设计原则实验之“迪米特法则”

每一个软件单位对其它单位都只有最少的知识&#xff0c;而且局限于那些与本单位密切相关的软件单位。 某软件公司所开发 CRM 系统包含很多业务操作窗口。在这些窗口中某些界面控件之间存在复杂的交互关系&#xff0c;一个控件事件的触发将导致多个其他界面控件产生响应。例如&…

社交网络的分布式治理:分析Facebook在区块链社区中的角色

随着区块链技术的快速发展&#xff0c;社交网络的治理模式也逐渐受到关注。传统的社交网络往往由中心化的平台掌控&#xff0c;用户的权力和参与度受到限制&#xff0c;而区块链技术为社交网络的分布式治理提供了新的解决方案。本文将深入探讨社交网络的分布式治理&#xff0c;…

MySQL-创建和管理表:基础知识、创建和管理数据库、创建表、修改表、重命名表、删除表、清空表、拓展

创建和管理表 1. 基础知识1.1 一条数据存储的过程1.2 标识符命名规则1.3 MySQL中的数据类型 2. 创建和管理数据库2.1 创建数据库2.2 使用数据库2.3 修改数据库2.4 删除数据库 3. 创建表3.1 创建方式13.2 创建方式23.3 查看数据表结构 4. 修改表4.1 追加一个列4.2 修改一个列4.3…