一、新建环境
在conda中建立一个虚拟环境featup,
conda create -n featup python=3.9 
二、开始配置:
 我是先下载了FeatUp,之后

pip install -e . -i https://mirrors.aliyun.com/pypi/simple/ 
但是,突然出错了,说无法安装torch,我就自己动手安装的pytorch,速度嗷嗷快

然后再重新执行
pip install -e . -i https://mirrors.aliyun.com/pypi/simple/ 
哈哈哈,配置环境完成
三、运行程序
import torch
import torchvision.transforms as T
from PIL import Image
from featup.util import norm, unnorm
from featup.plotting import plot_feats, plot_lang_heatmaps
input_size = 224
image_path = "c:/1.jpg"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
use_norm = True
transform = T.Compose([
    T.Resize(input_size),
    T.CenterCrop((input_size, input_size)),
    T.ToTensor(),
    norm
])
image_tensor = transform(Image.open(image_path).convert("RGB")).unsqueeze(0).to(device)
upsampler = torch.hub.load("mhamilton723/FeatUp", 'dinov2', use_norm=use_norm).to(device)
hr_feats = upsampler(image_tensor)
lr_feats = upsampler.model(image_tensor)
plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0]) 
注意这里image_path = "c:/1.jpg"
结果提示:

后来还发现缺很多库:
 pip install ftfy
pip install regex
四、成功
 





![HDFS [MSST‘10] 论文阅读笔记](https://img-blog.csdnimg.cn/direct/7d57e76bb72f4b78b9ab3d31f5069ef8.png#pic_center)










