SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

news2025/9/19 16:25:14

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,NGO-TCN-BiGRU-Attention鲸鱼算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% 

%% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close all

X = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);

%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end



%% 优化算法优化前,构建优化前的TCN_BiGRU_Attention模型

outputSize = 1;  %数据输出y的维度  
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.1;
numBlocks = 2;

layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);     convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end

    % Update layer output name.
    outputName = "add_" + i;
end


tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    FlipLayer("flip3")
    gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);


tempLayers = [
    concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1569807.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设计模式总结-面向对象设计原则

面向对象设计原则 面向对象设计原则简介单一职责原则单一职责原则定义单一职责原则分析单一职责原则实例 开闭原则开闭原则定义开闭原则分析开闭原则实例 里氏代换原则里氏代换原则定义里氏代换原则分析 依赖倒转原则依赖倒转原则定义依赖倒转原则分析依赖倒转原则实例 接口隔离…

配置 施耐德 modbusTCP 分布式IO子站 RPA0100

1. 总体步骤 2. 软件组态:在 Unity Pro 软件中创建编辑 PRA 模块工程 2.1 新建项目 模块箱硬件型号如下 点击 Unity Pro 软件左上方【新建】按钮,选择正确的 DIO 模块型号、背板型号 2.2 模块组态 2.2.1 拖拽添加模块 双击【配置】菜单下的【0&…

糟糕,Oracle归档满RMAN进不去,CPU98%了!

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

【QT+QGIS跨平台编译】056:【pdal_lepcc+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、pdal_lepcc介绍二、pdal下载三、文件分析四、pro文件五、编译实践一、pdal_lepcc介绍 pdal_lepcc 是 PDAL(Point Data Abstraction Library)的一个插件,用于点云数据的压缩。它基于 EPCC(Entwine Point Cloud Compression)算法,提供了对点…

72小时内报告!美国发布关键基础设施网络攻击通报新规草案

美国网络安全和基础设施安全局(CISA)本周四发布了关键基础设施企业如何向政府报告网络攻击的规定草案。 新规基于拜登2022年3月15日签署的美国《关键基础设施网络事件报告法案》(简称CIRCIA)。这是美国联邦政府首次提出一套跨关键基础设施部门的全面网络安全规则。CISA正在就规…

国外服务器托管需要了解哪些信息

国外服务器托管服务提供了一种在国外租用并管理服务器的方式,适用于需要特定地域服务或对本地法规有特殊要求的企业和个人。那么想要进行国外服务器托管需要了解哪些信息呢?Rak部落小编为您整理发布国外服务器托管相关内容。 以下是一些关于国外服务器托管服务的详…

十分钟掌握在 PyTorch 中构建一个深度神经网络,基本组件、步骤和代码实现,从导入模块和定义网络结构到训练和评估网络性能。

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 深度神经网络(Deep Neural Networks, DNNs),也被称为人工神经网络(Artificial Neural Networks,ANNs),已成为当今机器学习任务中最流行、最成功的方法之一。这些网络能够表示数据中的复杂关系,并在图像分类、自然…

储能系统--液冷充电枪

前言 随着新能源汽车在市场中的占比不断攀升,续航里程和充电时间成为了制约新能源汽车发展的两个关键因素, 而随着续航里程的增加,电池容量也会相应的增加,充电时间也会加长,大功率快充技术逐渐成为解决续航瓶颈的关键…

C易错注意之const修饰指针,含char类型计算,位段及相关经典易错例题

目录 前言 一:const修饰指针 1.const修饰变量 2.const 修饰指针 1.const int*p&m; 2. int* const p&m; 3. int const *p&m; 4. int const *const p&m; 5.总结 总之一句话为:左定值有定向 二:关于计算中char类型…

AI工作站设计方案:903-多路PCIe3.0的单CPU 学习型AI工作站

多路PCIe3.0的单CPU 学习型AI工作站 一、机箱功能和技术指标: 系统 系统型号 ORI-SR500 主板支持 EEB(12*13)/CEB(12*10.5)/ATX(12*9.6)/Mi cro ATX 前置硬盘 最大支持2个3.5寸1个2.5寸SATA 硬盘2个2.5寸SATA 硬盘 (背部) 电源类型 C…

Mybatis--TypeHandler使用手册

TypeHandler使用手册 场景:想保存user时 teacher自动转String ,不想每次保存都要手动去转String;从DB查询出来时,也要自动帮我们转换成Java对象 Teacher Data public class User {private Integer id;private String name;priva…

gpt国内怎么用?最新版本来了

claude 3 opus面世后,这几天已经有许多应用,而其精确以及从不偷懒(截止到2024年3月11日还没有偷懒)的个性,也使得我们可以用它来首次完成各种需要多轮对话的尝试。 今天我们想要进行的一项尝试就是—— 如何从一个不知…

PWM技术的应用

目录 PWM技术简介 PWM重要参数 PWM实现呼吸灯 脉宽调制波形 PWM案例 电路图 keil文件 直流电机 直流电机的控制 直流电机的驱动芯片L293D L293D引脚图 L293D功能表 直流电机案例 电路图 keil文件 步进电机 步进电机特点 步进电机驱动芯片L298 L298引脚图 L…

MySQL、Oracle查看字节和字符长度个数的函数

目录 0. 总结1. MySQL1.1. 造数据1.2. 查看字符/字节个数 2. Oracle2.1. 造数据2.2. 查看字符/字节个数 0. 总结 databasecharbyteMySQLchar_length()length()Oraclelength()lengthB() 1. MySQL 1.1. 造数据 sql drop table if exists demo; create table demo (id …

c++宏有什么离谱操作?

Boost.Preprocessor确实是一个非常强大而复杂的C宏库,专门用于元编程,即在编译时进行代码生成和变换。我这里有一套编程入门教程,不仅包含了详细的视频讲解,项目实战。如果你渴望学习编程不妨点个关注,给个评论222&…

卷积神经网络-池化层

卷积神经网络-池化层 池化层(Pooling Layer)是深度学习神经网络中的一个重要组成部分,通常用于减少特征图的空间尺寸,从而降低模型复杂度和计算量,同时还能增强模型的不变性和鲁棒性。 池化操作通常在卷积神经网络&am…

Nativefier - 将网页变为软件

Nativefier 是一款命令行工具,可以轻松地为任何网站创建 "桌面应用程序",而无需大费周章。应用程序由 Electron(内核使用 Chromium)封装成操作系统可执行文件(.app、.exe 等),可在 Wi…

GD32F470_MQ-2烟雾检测传感器模块移植

2.5 MQ-2烟雾检测传感器 MQ-2型烟雾传感器属于二氧化锡半导体气敏材料,属于表面离子式N型半导体。处于200~3000摄氏度时,二氧化锡表面吸附空气中的氧,形成氧的负离子吸附,使半导体中的电子密度减少,从而使其电阻值增加…

接口的总结与面试题

接口本身不能创建对象,只能创建接口的实现类对象,接口类型的变量可以与实现类对象构成多态引用。 声明接口用interface,接口的成员声明有限制: (1)公共的静态常量 (2)公共的抽象方…

LeetCode-热题100:2. 两数相加

题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数都…