理论实践-CPU性能监控工具-uptime-mpstat-pidstat-vmstat-top-ps-perf

news2025/7/4 10:23:00

CPU 性能工具。

首先,平均负载的案例。我们先用 uptime, 查看了系统的平均负载;而在平均负载升高后,又用 mpstat 和 pidstat ,分别观察了每个 CPU 和每个进程 CPU 的使用情况,进而找出了导致平均负载升高的进程,也就是我们的压测工具 stress

第二个,上下文切换的案例。我们先用 vmstat ,查看了系统的上下文切换次数和中断次数;然后通过 pidstat ,观察了进程的自愿上下文切换和非自愿上下文切换情况;最后通过 pidstat ,观察了线程的上下文切换情况,找出了上下文切换次数增多的根源,也就是我们的基准测试工具 sysbench。

第三个,进程 CPU 使用率升高的案例。我们先用 top ,查看了系统和进程的 CPU 使用情况,发现 CPU 使用率升高的进程是 php-fpm;再用 perf top ,观察 php-fpm 的调用链,最终找出 CPU 升高的根源,也就是库函数 sqrt() 。

第四个,系统的 CPU 使用率升高的案例。我们先用 top 观察到了系统 CPU 升高,但通过 top 和 pidstat ,却找不出高 CPU 使用率的进程。于是,我们重新审视 top 的输出,又从 CPU 使用率不高但处于 Running 状态的进程入手,找出了可疑之处,最终通过 perf record 和 perf report ,发现原来是短时进程在捣鬼。

另外,对于短时进程,我还介绍了一个专门的工具 execsnoop,它可以实时监控进程调用的外部命令。

第五个,不可中断进程和僵尸进程的案例。我们先用 top 观察到了 iowait 升高的问题,并发现了大量的不可中断进程和僵尸进程;接着我们用 dstat 发现是这是由磁盘读导致的,于是又通过 pidstat 找出了相关的进程。但我们用 strace 查看进程系统调用却失败了,最终还是用 perf 分析进程调用链,才发现根源在于磁盘直接 I/O 。

最后一个,软中断的案例。我们通过 top 观察到,系统的软中断 CPU 使用率升高;接着查看 /proc/softirqs, 找到了几种变化速率较快的软中断;然后通过 sar 命令,发现是网络小包的问题,最后再用 tcpdump ,找出网络帧的类型和来源,确定是一个 SYN FLOOD 攻击导致的。

到这里,估计你已经晕了吧,原来短短几个案例,我们已经用过十几种 CPU 性能工具了,而且每种工具的适用场景还不同呢!这么多的工具要怎么区分呢?在实际的性能分析中,又该怎么选择呢?

我的经验是,从两个不同的维度来理解它们,做到活学活用。

活学活用,把性能指标和性能工具联系起来
第一个维度,从 CPU 的性能指标出发。也就是说,当你要查看某个性能指标时,要清楚知道哪些工具可以做到。
在这里插入图片描述
下面,我们再来看第二个维度。

第二个维度,从工具出发。也就是当你已经安装了某个工具后,要知道这个工具能提供哪些指标。

在这里插入图片描述

平均负载的案例

uptime的使用
在这里插入图片描述

uptime的输出信息理解:

前面的几列比较熟悉,它们分别是当前时间、系统运行时间以及正在登录用户数。
最后三个数字呢,依次则是过去 1 分钟、5 分钟、15 分钟的平均负载(Load Average)。

对于平均负载的理解

平均负载是指单位时间内,系统处于可运行状态和不可中断状态的平均进程数(进程状态:pass),也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。

平均负载为多少时合理?

平均负载最理想的情况是等于 CPU 个数。所以在评判平均负载时,首先你要知道系统有几个 CPU,这可以通过 top 命令(输入数字“1”)或者从文件 /proc/cpuinfo 中读取(#grep ‘model name’ /proc/cpuinfo | wc -l)

举例
既然平均的是活跃进程数,那么最理想的,就是每个 CPU 上都刚好运行着一个进程,这样每个 CPU 都得到了充分利用。比如当平均负载为 2 时,意味着什么呢?

在只有 2 个 CPU 的系统上,意味着所有的 CPU 都刚好被完全占用。
在 4 个 CPU 的系统上,意味着 CPU 有 50% 的空闲。
而在只有 1 个 CPU 的系统中,则意味着有一半的进程竞争不到 CPU。

平均负载有三个数值,到底该参考哪一个呢?

实际上,都要看。三个不同时间间隔的平均值,其实给我们提供了,分析系统负载趋势的数据来源,让我们能更全面、更立体地理解目前的负载状况。

同样的,前面说到的 CPU 的三个负载时间段也是这个道理。

如果 1 分钟、5 分钟、15 分钟的三个值基本相同,或者相差不大,那就说明系统负载很平稳。

但如果 1 分钟的值远小于 15 分钟的值,就说明系统最近 1 分钟的负载在减少,而过去 15 分钟内却有很大的负载。

反过来,如果 1 分钟的值远大于 15 分钟的值,就说明最近 1 分钟的负载在增加,这种增加有可能只是临时性的,也有可能还会持续增加下去,所以就需要持续观察。一旦 1 分钟的平均负载接近或超过了 CPU 的个数,就意味着系统正在发生过载的问题,这时就得分析调查是哪里导致的问题,并要想办法优化了。

在实际生产环境中,平均负载多高时,需要我们重点关注呢?

在我看来,当平均负载高于 CPU 数量 70% 的时候,你就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。

但 70% 这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。

平均负载与 CPU 使用率

平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。

而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:
CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。

三个场景下的观测方法

用 mpstat 和 pidstat ,分别观察了每个 CPU 和每个进程 CPU 的使用情况,进而找出了导致平均负载升高的进程;
通过stree工具模拟三个场景;

工具介绍:
mpstat 是一个常用的多核 CPU 性能分析工具,用来实时查看每个 CPU 的性能指标,以及所有 CPU 的平均指标。
pidstat 是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。

场景一:CPU 密集型进程

首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:

首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:

接着,在第二个终端运行 uptime 查看平均负载的变化情况:

# -d 参数表示高亮显示变化的区域
$ watch -d uptime
...,  load average: 1.00, 0.75, 0.39

最后,在第三个终端运行 mpstat 查看 CPU 使用率的变化情况:

# -P ALL 表示监控所有 CPU,后面数字 5 表示间隔 5 秒后输出一组数据
$ mpstat -P ALL 5
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:30:06     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:30:11     all   50.05    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00   49.95
13:30:11       0    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00  100.00
13:30:11       1  100.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00

从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高正是由于 CPU 使用率为 100% 。
那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?你可以使用 pidstat 来查询:

# 间隔 5 秒后输出一组数据
$ pidstat -u 5 1
13:37:07      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:37:12        0      2962  100.00    0.00    0.00    0.00  100.00     1  stress

场景二:I/O 密集型进程

首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync:

stress -i 1 --timeout 600

场景三:大量进程的场景

当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。
比如,我们还是使用 stress,但这次模拟的是 8 个进程:

stress -c 8 --timeout 600

上下文切换的案例-怎么查看 CPU 使用率

知道了 CPU 使用率的含义后,我们再来看看要怎么查看 CPU 使用率。说到查看 CPU 使用率的工具,我猜你第一反应肯定是 top 和 ps。的确,top 和 ps 是最常用的性能分析工具:

top 显示了系统总体的 CPU 和内存使用情况,以及各个进程的资源使用情况。

ps 则只显示了每个进程的资源使用情况。

# 默认每 3 秒刷新一次
$ top
top - 11:58:59 up 9 days, 22:47,  1 user,  load average: 0.03, 0.02, 0.00
Tasks: 123 total,   1 running,  72 sleeping,   0 stopped,   0 zombie
%Cpu(s):  0.3 us,  0.3 sy,  0.0 ni, 99.3 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem :  8169348 total,  5606884 free,   334640 used,  2227824 buff/cache
KiB Swap:        0 total,        0 free,        0 used.  7497908 avail Mem
 
  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
    1 root      20   0   78088   9288   6696 S   0.0  0.1   0:16.83 systemd
    2 root      20   0       0      0      0 S   0.0  0.0   0:00.05 kthreadd
    4 root       0 -20       0      0      0 I   0.0  0.0   0:00.00 kworker/0:0H
...

熟悉进程状态

在这里插入图片描述
可以查看进程的状态,这些状态包括运行(R)、空闲(I)、不可中断睡眠(D)、可中断睡眠(S)、僵尸(Z)以及暂停(T)等。

不可中断状态,表示进程正在跟硬件交互,为了保护进程数据和硬件的一致性,系统不允许其他进程或中断打断这个进程。进程长时间处于不可中断状态,通常表示系统有 I/O 性能问题。

僵尸进程表示进程已经退出,但它的父进程还没有回收子进程占用的资源。短暂的僵尸状态我们通常不必理会,但进程长时间处于僵尸状态,就应该注意了,可能有应用程序没有正常处理子进程的退出。

这个输出结果中,第三行 %Cpu 就是系统的 CPU 使用率,具体每一列的含义上一节都讲过,只是把 CPU 时间变换成了 CPU 使用率,我就不再重复讲了。不过需要注意,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使用率了。

继续往下看,空白行之后是进程的实时信息,每个进程都有一个 %CPU 列,表示进程的 CPU 使用率。它是用户态和内核态 CPU 使用率的总和,包括进程用户空间使用的 CPU、通过系统调用执行的内核空间 CPU 、以及在就绪队列等待运行的 CPU。在虚拟化环境中,它还包括了运行虚拟机占用的 CPU。

所以,到这里我们可以发现, top 并没有细分进程的用户态 CPU 和内核态 CPU。那要**怎么查看每个进程的详细情况呢?**你应该还记得上一节用到的 pidstat 吧,它正是一个专门分析每个进程 CPU 使用情况的工具。

用户态 CPU 使用率 (%usr);

内核态 CPU 使用率(%system);

运行虚拟机 CPU 使用率(%guest);

等待 CPU 使用率(%wait);

以及总的 CPU 使用率(%CPU)。

最后的 Average 部分,还计算了 5 组数据的平均值。

# 每隔 1 秒输出一组数据,共输出 5 组
$ pidstat 1 5
15:56:02      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
15:56:03        0     15006    0.00    0.99    0.00    0.00    0.99     1  dockerd
 
...
 
Average:      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
Average:        0     15006    0.00    0.99    0.00    0.00    0.99     -  dockerd

vmstat查看上下文切换次数的使用示例

用 vmstat 看一下空闲系统的上下文切换次数

# 间隔 1 秒后输出 1 组数据
$ vmstat 1 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 0  0      0 6984064  92668 830896    0    0     2    19   19   35  1  0 99  0  0

这里你可以看到,现在的上下文切换次数 cs 是 35,而中断次数 in 是 19,r 和 b 都是 0。因为这会儿我并没有运行其他任务,所以它们就是空闲系统的上下文切换次数。

# 每隔 1 秒输出 1 组数据(需要 Ctrl+C 才结束)
$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 6  0      0 6487428 118240 1292772    0    0     0     0 9019 1398830 16 84  0  0  0
 8  0      0 6487428 118240 1292772    0    0     0     0 10191 1392312 16 84  0  0  0

你应该可以发现,cs 列的上下文切换次数从之前的 35 骤然上升到了 139 万。同时,注意观察其他几个指标:

r 列:**就绪队列的长度**已经到了 8,远远超过了系统 CPU 的个数 2,所以肯定会有大量的 CPU 竞争。

us(user)和 sy(system)列:这两列的 CPU 使用率加起来上升到了 100%,其中系统 CPU 使用率,也就是 sy 列高达 84%,说明 CPU 主要是被内核占用了。

in 列:中断次数也上升到了 1 万左右(10191),说明中断处理也是个潜在的问题。

综合这几个指标,我们可以知道,系统的就绪队列过长,也就是正在运行和等待 CPU 的进程数过多,导致了大量的上下文切换,而上下文切换又导致了系统 CPU 的占用率升高。

到底是什么进程导致了这些问题呢?

# 每隔 1 秒输出 1 组数据(需要 Ctrl+C 才结束)
# -w 参数表示输出进程切换指标,而 -u 参数则表示输出 CPU 使用指标
$ pidstat -w -u 1
08:06:33      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
08:06:34        0     10488   30.00  100.00    0.00    0.00  100.00     0  sysbench
08:06:34        0     26326    0.00    1.00    0.00    0.00    1.00     0  kworker/u4:2
 
08:06:33      UID       PID   cswch/s nvcswch/s  Command
08:06:34        0         8     11.00      0.00  rcu_sched
08:06:34        0        16      1.00      0.00  ksoftirqd/1
08:06:34        0       471      1.00      0.00  hv_balloon
08:06:34        0      1230      1.00      0.00  iscsid
08:06:34        0      4089      1.00      0.00  kworker/1:5
08:06:34        0      4333      1.00      0.00  kworker/0:3
08:06:34        0     10499      1.00    224.00  pidstat
08:06:34        0     26326    236.00      0.00  kworker/u4:2
08:06:34     1000     26784    223.00      0.00  sshd

{cswch/s和nvcswch/s字段的含义通过查看帮助 man pidstat了解}

non voluntary context switches the task–非自愿上下文切换任务–nvcs
在这里插入图片描述

从 pidstat 的输出你可以发现,CPU 使用率的升高果然是 sysbench 导致的,它的 CPU 使用率已经达到了 100%。但上下文切换则是来自其他进程,包括非自愿上下文切换频率最高的 pidstat ,以及自愿上下文切换频率最高的内核线程 kworker 和 sshd。

不过,细心的你肯定也发现了一个怪异的事儿:pidstat 输出的上下文切换次数(cswch/s–自愿上下文切换,nvcswch/s–非自愿上下文切换),加起来也就几百,比 vmstat 的 139 万明显小了太多。这是怎么回事呢?难道是工具本身出了错吗?

别着急,在怀疑工具之前,我们再来回想一下,前面讲到的几种上下文切换场景。其中有一点提到, Linux 调度的基本单位实际上是线程,而我们的场景 sysbench 模拟的也是线程的调度问题,那么,是不是 pidstat 忽略了线程的数据呢?

通过运行 man pidstat ,你会发现,pidstat 默认显示进程的指标数据,加上 -t 参数后,才会输出线程的指标

所以,我们可以在第三个终端里, Ctrl+C 停止刚才的 pidstat 命令,再加上 -t 参数,重试一下看看:

# 每隔 1 秒输出一组数据(需要 Ctrl+C 才结束)
# -wt 参数表示输出线程的上下文切换指标
$ pidstat -wt 1
08:14:05      UID      TGID       TID   cswch/s nvcswch/s  Command
...
08:14:05        0     10551         -      6.00      0.00  sysbench
08:14:05        0         -     10551      6.00      0.00  |__sysbench
08:14:05        0         -     10552  18911.00 103740.00  |__sysbench
08:14:05        0         -     10553  18915.00 100955.00  |__sysbench
08:14:05        0         -     10554  18827.00 103954.00  |__sysbench
...

现在你就能看到了,虽然 sysbench 进程(也就是主线程)的上下文切换次数看起来并不多,但它的子线程的上下文切换次数却有很多。看来,上下文切换罪魁祸首,还是过多的 sysbench 线程。

中断次数也上升到了 1 万,但到底是什么类型的中断上升了,现在还不清楚。我们接下来继续抽丝剥茧找源头。

怎样才能知道中断发生的类型呢?

既然是中断,我们都知道,它只发生在内核态,而 pidstat 只是一个进程的性能分析工具,并不提供任何关于中断的详细信息,怎样才能知道中断发生的类型呢?

没错,那就是从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的一部分,提供了一个只读的中断使用情况。

# -d 参数表示高亮显示变化的区域
$ watch -d cat /proc/interrupts
           CPU0       CPU1
...
RES:    2450431    5279697   Rescheduling interrupts
...

观察一段时间,你可以发现,变化速度最快的是重调度中断(RES),这个中断类型表示,唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统(SMP)中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。

所以,这里的中断升高还是因为过多任务的调度问题,跟前面上下文切换次数的分析结果是一致的。

每秒上下文切换多少次才算正常呢?(根据上下文切换的类型,再做具体分析)

这个数值其实取决于系统本身的 CPU 性能。在我看来,如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。

这时,你还需要根据上下文切换的类型,再做具体分析。比方说:

自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;

非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈;

中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。

CPU 使用率过高怎么办?

通过 top、ps、pidstat 等工具,你能够轻松找到 CPU 使用率较高(比如 100% )的进程。接下来,你可能又想知道,占用 CPU 的到底是代码里的哪个函数呢?找到它,你才能更高效、更针对性地进行优化。

我猜你第一个想到的,应该是 GDB(The GNU Project Debugger), 这个功能强大的程序调试利器。的确,GDB 在调试程序错误方面很强大。但是,我又要来“挑刺”了。请你记住,GDB 并不适合在性能分析的早期应用。

为什么呢?因为 GDB 调试程序的过程会中断程序运行,这在线上环境往往是不允许的。所以,GDB 只适合用在性能分析的后期,当你找到了出问题的大致函数后,线下再借助它来进一步调试函数内部的问题。
那么**哪种工具适合在第一时间分析进程的 CPU 问题呢?**我的推荐是 perf。perf 是 Linux 2.6.31 以后内置的性能分析工具。它以性能事件采样为基础,不仅可以分析系统的各种事件和内核性能,还可以用来分析指定应用程序的性能问题。

使用 perf 分析 CPU 性能问题,

我来说两种最常见、也是我最喜欢的用法。

第一种常见用法是 perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,使用界面如下所示:

$ perf top
Samples: 833  of event 'cpu-clock', Event count (approx.): 97742399
Overhead  Shared Object       Symbol
   7.28%  perf                [.] 0x00000000001f78a4
   4.72%  [kernel]            [k] vsnprintf
   4.32%  [kernel]            [k] module_get_kallsym
   3.65%  [kernel]            [k] _raw_spin_unlock_irqrestore
...

输出结果中,第一行包含三个数据,分别是采样数(Samples)、事件类型(event)和事件总数量(Event count)。比如这个例子中,perf 总共采集了 833 个 CPU 时钟事件,而总事件数则为 97742399。

另外,采样数需要我们特别注意。如果采样数过少(比如只有十几个),那下面的排序和百分比就没什么实际参考价值了。

再往下看是一个表格式样的数据,每一行包含四列,分别是:
输出结果中,第一行包含三个数据,分别是采样数(Samples)、事件类型(event)和事件总数量(Event count)。比如这个例子中,perf 总共采集了 833 个 CPU 时钟事件,而总事件数则为 97742399。

另外,采样数需要我们特别注意。如果采样数过少(比如只有十几个),那下面的排序和百分比就没什么实际参考价值了。

再往下看是一个表格式样的数据,每一行包含四列,分别是:

第一列 Overhead ,是该符号的性能事件在所有采样中的**比例**,用百分比来表示。
第二列 Shared ,是**该函数或指令所在的动态共享对象**(Dynamic Shared Object),如内核、进程名、动态链接库名、内核模块名等。
第三列 Object ,是**动态共享对象的类型**。比如 [.] 表示用户空间的可执行程序、或者动态链接库,而 [k] 则表示内核空间。
最后一列 Symbol 是符号名,也就是**函数名**。当函数名未知时,用十六进制的地址来表示。

还是以上面的输出为例,我们可以看到,占用 CPU 时钟最多的是 perf 工具自身,不过它的比例也只有 7.28%,说明系统并没有 CPU 性能问题。 perf top 的使用你应该很清楚了吧。

接着再来看第二种常见用法,也就是 perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。

$ perf record # 按 Ctrl+C 终止采样
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.452 MB perf.data (6093 samples) ]
 
$ perf report # 展示类似于 perf top 的报告

在实际使用中,我们还经常为 perf top 和 perf record 加上 -g 参数,开启调用关系的采样,方便我们根据调用链来分析性能问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1569079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

刷题之Leetcode35题(超级详细)

35.搜索插入位置 力扣题目链接(opens new window)https://leetcode.cn/problems/search-insert-position/ 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 你可…

【Java八股学习】Redis持久化 思维导图

说明 文章内容通过学习小林Coding内的优质文章后整理而来,整理成思维导图的方式是为了帮助自己理解、记忆和复习。如若侵权请联系删除,再次对小林Coding内的优质文章表示感谢。参考文章如下: AOF 持久化是怎么实现的?RDB 快照是…

【.NET全栈】ZedGraph图表库的介绍和应用

文章目录 一、ZedGraph介绍ZedGraph的特点ZedGraph的缺点使用注意事项 二、ZedGraph官网三、ZedGraph的应用四、ZedGraph的高端应用五、、总结 一、ZedGraph介绍 ZedGraph 是一个用于绘制图表和图形的开源.NET图表库。它提供了丰富的功能和灵活性,可以用于创建各种…

计算机网络:数据链路层 - 可靠传输协议

计算机网络:数据链路层 - 可靠传输协议 可靠传输概念停止-等待协议 SW回退N帧协议 GBN选择重传协议 SR 可靠传输概念 如下所示,帧在传输过程中受到干扰,产生了误码。接收方的数据链路层,通过真伪中的真检验序列 FCS 字段的值&…

在ArcGIS Pro中优雅的制作荧光图

最近在网上看到了荧光图,觉得挺帅气,去网上查询了怎么制作荧光图,发现大部分都是QGIS的教程,作为ArcGIS的死忠用户,决定在ArcGIS Pro中实现,其实挺简单的。 1、软件:ArcGIS Pro3.0 2、点数据&a…

【RISC-V 指令集】RISC-V 向量V扩展指令集介绍(五)- 向量加载和存储

1. 引言 以下是《riscv-v-spec-1.0.pdf》文档的关键内容: 这是一份关于向量扩展的详细技术文档,内容覆盖了向量指令集的多个关键方面,如向量寄存器状态映射、向量指令格式、向量加载和存储操作、向量内存对齐约束、向量内存一致性模型、向量…

8.list容器的使用

文章目录 list容器1.构造函数代码工程运行结果 2.赋值和交换代码工程运行结果 3.大小操作代码工程运行结果 4.插入和删除代码工程运行结果 5.数据存取工程代码运行结果 6.反转和排序代码工程运行结果 list容器 1.构造函数 /*1.默认构造-无参构造*/ /*2.通过区间的方式进行构造…

如何从 Android 和 iPhone 中的 SIM 卡恢复已删除的联系人 [新]

在手机上,我们经常添加联系人,而很少关心联系人是存储在SIM卡中还是手机中。当我们错误删除SIM卡联系人,或者不当取出插入的SIM卡插入新手机时,那些因业务需要而添加的联系人就会消失。这可能会令人沮丧和困惑。因此,您…

基于springboot实现墙绘产品展示交易平台管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现墙绘产品展示交易平台管理系统演示 摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本墙绘产品展示交易平台就是在这样的大环境下诞生&…

macbook向日葵忘记密码

macbook向日葵忘记密码 问题:1、切换到下面的目录:2、找到配置文件3、删除该配置文件4、然后就正常了 问题: 向日葵忘记密码的话,即使是卸载了重装也需要输入密码,界面一直如下: 1、切换到下面的目录&am…

浅谈TCP(2):流量控制与拥塞控制

上文浅谈TCP(1):状态机与重传机制介绍了TCP的状态机与重传机制。本文介绍流量控制(Flow Control,简称流控)与拥塞控制(Congestion Control)。TCP依此保障网络的QOS(Quali…

sparksql执行流程

1. SparkSQL的自动优化 我们前面的文章已经说过spark RDD定义好后,执行经过DAG sechduler划分号内存管道、逻辑任务,然后经由task scheduler来分配到具体worker来管理运行,RDD的运行会完全按照开发者的代码执行 如果开发者水平有限&#xff…

Transformers in Vision:A Survey 阅读笔记

ACM上的一篇综述,讨论Transformer在CV上的应用。 摘要: Among their salient benefits,Transformers enable modeling long dependencies between inputsequence elements and support parallel processing of sequence as compared to recurrent networ…

MFC通用静态库制作与使用

开发环境VS2013 1、新建工程,选择Win32 Project,命名,选择路径等 2、选择Static library ,勾选MFC 3、点击完成。在工程中添加相应的头文件、源文件等通用功能函数或者类。 4、在其他工程引入使用。在使用的工程项目设置中Linker…

C语言-----数据在内存中的存储(1)

1.整数在内存中的存储 我们之前就了解过整数的二进制写法分别有3种,分别为原码,反码,补码。整型在内存中存储的是补码。 原码,反码,补码都有自己的符号位和数值位,符号位为1时,则表示负数&…

AI绘画:使用Stable Diffusion ComfyUI进行换脸:IPAdapter FaceID全面教程

在数字艺术和媒体编辑领域,换脸技术已经成为一种流行且强大的工具。它允许创作者将一个人物的面部特征无缝地转移到另一个人物上,创造出令人信服的视觉作品。Stable Diffusion ComfyUI提供了一个高效的平台,让用户能够轻松地实现换脸。本文将…

python和pip中常见命令和方法

玩python的同学想必没有不用pip的吧,pip是python包管理工具,和Nodejs的npm、Java的maven类似,这些依靠开源力量建立起的庞大软件库极大提高了开发的效率,下面是整理和总结pip中的常见命令和方法。 pip更新版本 python -m pip inst…

图像分割-综述篇

文章目录 图像分割算法类型全卷积FCNSegNetUNetDeeplab v1PSPNetDeeplab v2Deeplab v3Deeplab v3 基于候选区Mask RCNNMS RNN 基于GAN基于RNNReSegViTSwin TransformerSAM(Segment Anything Model) 图像分割算法类型 正如我在目标检测系列中提到的,图像分割&#x…

flutter官方案例context_menus【搭建与效果查看】【省时】

案例地址 https://github.com/flutter/samples/tree/main/context_menus 1:运行查看有什么可以快捷使用的,更新了些什么,可不可以直接复制粘贴 主要内容:在web端中模拟手机类型的点击长按操作,不能直接运行在安卓与io…

代码随想录Day27:回溯算法Part3

Leetcode 39. 组合总和 讲解前: 这道题其实在掌握了之前的组合问题之后再看并不是那么难,其关键就在于我们这道题中没有一个特定需要的组合大小,并且列表中的元素是可以重复使用的,那么比如说给的例子中的 输入: candidates [2…