前言
Web脚本语言JavaScript入门容易,但是想要熟练掌握却需要几年的学习与实践,还要在弱类型开发语言中习惯于使用模块来构建你的代码,就像小时候玩的乐高积木一样。

应用程序的模块化理念,通过将实现隐藏在一个简单的接口后面,您可以使您的应用程序万无一失且易于使用。它只做它应该做的,没有别的。

通过隐藏实现,我们对使用我们代码的人实施了良好的编码风格。您可以访问的实现越多,它就越有可能成为您以后必须处理的复杂的半生不熟的“修复”。

创建3D场景时,唯一的限制是您的想象力 - 以及您的技术知识深度。

描述3D空间的坐标系和用于在坐标系内移动对象是难点加重点。场景图用于描述构成我们场景的对象层次结构的结构,向量用于描述3D空间中的位置(以及许多其他事物) ,还有不少于两种描述旋转的方式:欧拉角Euler angles和四元数quaternions。
对 three.js 和乐高模型web化相关知识点进行实战。希望能与大家交流技术心得和经验,一起共同进步。涉及的知识点如下:
3D 场景初始化:场景、相机、渲染器
透视相机的位置调整
几何体:BoxGeometry、CylinderGeometry、LatheGeometry
材质:MeshLambertMaterial、MeshPhongMaterial、MeshBasicMaterial
光源:AmbientLight、SpotLightHelper、DirectionalLight
更新材质的纹理:TextureLoader
渲染 3D 文本:TextGeometry、FontLoader
实现物体阴影效果
3D 坐标的计算
物体交互的实现:Raycaster、坐标归一化
3D 资源的销毁释放
补间动画、动画编排
class 等
为了方便demo演示,采用传统的 HTML 单文件importmap、module方式来编写代码。
实践
容器
首先,准备一个空白容器,让它的尺寸与浏览器视窗大小相同,以充分利用屏幕空间。
<div id="scene-container"></div>依赖
对于 JS 脚本,使用 导入映射 配置资源的 CDN 地址,这样就可以像使用 npm 包一样导入相关资源。
<script type="importmap">
    {
      "imports": {
        "three": "https://cdn.jsdelivr.net/npm/three@0.162.0/+esm",
        "three/addons/": "https://cdn.jsdelivr.net/npm/three@0.162.0/examples/jsm/",
		"lil-gui": "https://threejsfundamentals.org/3rdparty/dat.gui.module.js",
        "@tweenjs/tween.js": "https://cdn.jsdelivr.net/npm/@tweenjs/tween.js@23.1.1/dist/tween.esm.js",
        "canvas-confetti": "https://cdn.jsdelivr.net/npm/canvas-confetti@1.9.2/+esm"
      }
    }
  </script>接着就可以引入依赖。
<script type="module">
		import * as THREE from 'three';
		import * as TWEEN from '@tweenjs/tween.js';
        import confetti from 'canvas-confetti';
		import { GUI } from 'lil-gui';
</script>设计变量、类、方法
定义相关变量
let container, progressBarDiv;
let camera, scene, renderer, controls, gui, guiData, anLoop;
let model;
const modelFileList = {'Car': './car.txt'}设计乐高类
class Ldraw {
			constructor(){
				// 首次使用构造器实例
				if (!(Ldraw.instance instanceof Ldraw)) {
					this.init();
				}
				return Ldraw.instance
			}
			init() {
				//container = document.createElement( 'div' );
				//document.body.appendChild( container );
				camera = new THREE.PerspectiveCamera( 45, container.clientWidth / container.clientHeight, 1, 10000 );
				camera.position.set( 150, 200, 250 );
			
				// renderer
			
				renderer = new THREE.WebGLRenderer( { antialias: true } );
				//renderer.setSize( window.innerWidth, window.innerHeight );
				renderer.setSize(container.clientWidth, container.clientHeight);
				// eslint-disable-next-line no-undef
				renderer.setPixelRatio(window.devicePixelRatio);
				renderer.toneMapping = THREE.ACESFilmicToneMapping;
				// canvas画布绝对定位
				//renderer.domElement.style.display = 'black';
				//renderer.domElement.style.position = 'absolute';
				//renderer.domElement.style.top = '0px';
				//renderer.domElement.style.left = '0px';
				//renderer.domElement.style.zIndex = -1;
				container.appendChild( renderer.domElement );
			
				// scene
			
				const pmremGenerator = new THREE.PMREMGenerator( renderer );
			
				scene = new THREE.Scene();
				scene.background = new THREE.Color( 0xdeebed );
				scene.environment = pmremGenerator.fromScene( new RoomEnvironment( renderer ) ).texture;
			
				controls = new OrbitControls( camera, renderer.domElement );
				controls.enableDamping = true;
				anLoop = new Loop(camera, scene, renderer);
			
				// gui
			
				guiData = {
					//modelFileName: modelFileList[ 'Car' ],
					displayLines: true,
					conditionalLines: true,
					smoothNormals: true,
					buildingStep: 0,
					noBuildingSteps: 'No steps.',
					flatColors: false,
					mergeModel: false
				};
			
				window.addEventListener( 'resize', this.onWindowResize );
			
				progressBarDiv = document.createElement( 'div' );
				progressBarDiv.innerText = 'Loading...';
				progressBarDiv.style.fontSize = '3em';
				progressBarDiv.style.color = '#888';
				progressBarDiv.style.display = 'block';
				progressBarDiv.style.position = 'absolute';
				progressBarDiv.style.top = '50%';
				progressBarDiv.style.width = '100%';
				progressBarDiv.style.textAlign = 'center';
			
			
				// load materials and then the model
			
				this.reloadObject( true );
			
			}
			
			updateObjectsVisibility() {
			
				model.traverse( c => {
			
					if ( c.isLineSegments ) {
			
						if ( c.isConditionalLine ) {
			
							c.visible = guiData.conditionalLines;
			
						} else {
			
							c.visible = guiData.displayLines;
			
						}
			
					} else if ( c.isGroup ) {
			
						// Hide objects with building step > gui setting
						c.visible = c.userData.buildingStep <= guiData.buildingStep;
			
					}
			
				} );
			
			}
			
			reloadObject( resetCamera ) {
			
				if ( model ) {
			
					scene.remove( model );
			
				}
			
				model = null;
			
				this.updateProgressBar( 0 );
				this.showProgressBar;
			
				// only smooth when not rendering with flat colors to improve processing time
				const lDrawLoader = new LDrawLoader();
				lDrawLoader.smoothNormals = guiData.smoothNormals && ! guiData.flatColors;
				lDrawLoader.load( './car.txt',  ( group2 )=> {
					//.setPath( ldrawPath )
					//.load( guiData.modelFileName,  ( group2 )=> {
			
						if ( model ) {
			
							scene.remove( model );
			
						}
			
						model = group2;
			
						// demonstrate how to use convert to flat colors to better mimic the lego instructions look
						if ( guiData.flatColors ) {
			
							const convertMaterial = ( material )=> {
			
								const newMaterial = new THREE.MeshBasicMaterial();
								newMaterial.color.copy( material.color );
								newMaterial.polygonOffset = material.polygonOffset;
								newMaterial.polygonOffsetUnits = material.polygonOffsetUnits;
								newMaterial.polygonOffsetFactor = material.polygonOffsetFactor;
								newMaterial.opacity = material.opacity;
								newMaterial.transparent = material.transparent;
								newMaterial.depthWrite = material.depthWrite;
								newMaterial.toneMapping = false;
			
								return newMaterial;
			
							}
			
							model.traverse( c => {
			
								if ( c.isMesh ) {
			
									if ( Array.isArray( c.material ) ) {
			
										c.material = c.material.map( convertMaterial );
			
									} else {
			
										c.material = convertMaterial( c.material );
			
									}
			
								}
			
							} );
			
						}
			
						// Merge model geometries by material
						if ( guiData.mergeModel ) model = LDrawUtils.mergeObject( model );
			
						// Convert from LDraw coordinates: rotate 180 degrees around OX
						model.rotation.x = Math.PI;
			
						scene.add( model );
			
						guiData.buildingStep = model.userData.numBuildingSteps - 1;
			
						this.updateObjectsVisibility;
			
						// Adjust camera and light
			
						const bbox = new THREE.Box3().setFromObject( model );
						const size = bbox.getSize( new THREE.Vector3() );
						const radius = Math.max( size.x, Math.max( size.y, size.z ) ) * 0.5;
			
						if ( resetCamera ) {
			
							controls.target0.copy( bbox.getCenter( new THREE.Vector3() ) );
							controls.position0.set( - 2.3, 1, 2 ).multiplyScalar( radius ).add( controls.target0 );
							controls.reset();
			
						}
			
						this.createGUI;
			
						this.hideProgressBar;
			
					}, this.onProgress, this.onError );
				//});
			
			}
			
			onWindowResize() {
			
				camera.aspect = window.innerWidth / window.innerHeight;
				camera.updateProjectionMatrix();
			
				renderer.setSize( window.innerWidth, window.innerHeight );
			
			}
			
			createGUI() {
			
				if ( gui ) {
			
					gui.destroy();
			
				}
			
				gui = new GUI();
			
				gui.add( guiData, 'modelFileName', modelFileList ).name( 'Model' ).onFinishChange( ()=> {
			
					this.reloadObject( true );
			
				} );
			
				gui.add( guiData, 'flatColors' ).name( 'Flat Colors' ).onChange( ()=> {
			
					this.reloadObject( false );
			
				} );
			
				gui.add( guiData, 'mergeModel' ).name( 'Merge model' ).onChange( ()=> {
			
					this.reloadObject( false );
			
				} );
			
				if ( model.userData.numBuildingSteps > 1 ) {
			
					gui.add( guiData, 'buildingStep', 0, model.userData.numBuildingSteps - 1 ).step( 1 ).name( 'Building step' ).onChange( this.updateObjectsVisibility );
			
				} else {
			
					gui.add( guiData, 'noBuildingSteps' ).name( 'Building step' ).onChange( this.updateObjectsVisibility );
			
				}
				const changeNormals = ()=> {
			
					this.reloadObject( false );
			
				} 
			
				gui.add( guiData, 'smoothNormals' ).name( 'Smooth Normals' ).onChange( changeNormals );
			
				gui.add( guiData, 'displayLines' ).name( 'Display Lines' ).onChange( this.updateObjectsVisibility );
				gui.add( guiData, 'conditionalLines' ).name( 'Conditional Lines' ).onChange( this.updateObjectsVisibility );
			
			}
			animate() {
			
				requestAnimationFrame( this.animate );
				controls.update();
				this.render;
			
			}
			
			render() {
			
				renderer.render( scene, camera );
			
			}
			updateProgressBar( fraction ) {
			
				progressBarDiv.innerText = 'Loading... ' + Math.round( fraction * 100, 2 ) + '%';
			
			}
			
			onProgress( xhr ) {
			
				if ( xhr.lengthComputable ) {
			
					this.updateProgressBar( xhr.loaded / xhr.total );
			
					console.log( Math.round( xhr.loaded / xhr.total * 100, 2 ) + '% downloaded' );
			
				}
			
			}
			
			onError( error ) {
			
				const message = 'Error loading model';
				progressBarDiv.innerText = message;
				console.log( message );
				console.error( error );
			
			}
			
			showProgressBar() {
			
				document.body.appendChild( progressBarDiv );
			
			}
			
			hideProgressBar() {
			
				document.body.removeChild( progressBarDiv );
			
			}
			start() {
				anLoop.start();
			}
			stop() {
				anLoop.stop();
			}
			tick() {
				// Code to update animations will go here
				anLoop.tick();
			}
			
		}
		//export { Ldraw }创建一个场景(Scene)、一个透视相机(PerspectiveCamera)和一个 WebGL 渲染器(WebGLRenderer),并将渲染器添加到 DOM 中。同时,编写一个渲染函数,使用requestAnimationFrame 方法循环渲染场景。
import {
		EventDispatcher,
		MOUSE,
		Quaternion,
		Spherical,
		TOUCH,
		Plane,
		Ray,
		MathUtils,
		BackSide,
		BoxGeometry,
		Mesh,
		Scene,
		MeshBasicMaterial,
		MeshStandardMaterial,
		PointLight,
		BufferAttribute,
		BufferGeometry,
		FileLoader,
		Group,
		LineBasicMaterial,
		LineSegments,
		Loader,
		ShaderMaterial,
		SRGBColorSpace,
		UniformsLib,
		UniformsUtils,
		Clock,
		Color,
		Matrix3,
		Matrix4,
		PerspectiveCamera,
		Vector2,
		Vector3,
		Vector4,
		WebGLRenderTarget,
		HalfFloatType,
		Float32BufferAttribute,
		InstancedBufferAttribute,
		InterleavedBuffer,
		InterleavedBufferAttribute,
		TriangleFanDrawMode,
		TriangleStripDrawMode,
		TrianglesDrawMode,
	} from 'three';
	// OrbitControls performs orbiting, dollying (zooming), and panning.
	// Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default).
	//
	//    Orbit - left mouse / touch: one-finger move
	//    Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish
	//    Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move
	const _changeEvent = { type: 'change' };
	const _startEvent = { type: 'start' };
	const _endEvent = { type: 'end' };
	const _ray = new Ray();
	const _plane = new Plane();
	const TILT_LIMIT = Math.cos( 70 * MathUtils.DEG2RAD );
	class OrbitControls extends EventDispatcher {
		constructor( object, domElement ) {
			super();
			this.object = object;
			this.domElement = domElement;
			this.domElement.style.touchAction = 'none'; // disable touch scroll
			// Set to false to disable this control
			this.enabled = true;
			// "target" sets the location of focus, where the object orbits around
			this.target = new Vector3();
			// Sets the 3D cursor (similar to Blender), from which the maxTargetRadius takes effect
			this.cursor = new Vector3();
			// How far you can dolly in and out ( PerspectiveCamera only )
			this.minDistance = 0;
			this.maxDistance = Infinity;
			// How far you can zoom in and out ( OrthographicCamera only )
			this.minZoom = 0;
			this.maxZoom = Infinity;
			// Limit camera target within a spherical area around the cursor
			this.minTargetRadius = 0;
			this.maxTargetRadius = Infinity;
			// How far you can orbit vertically, upper and lower limits.
			// Range is 0 to Math.PI radians.
			this.minPolarAngle = 0; // radians
			this.maxPolarAngle = Math.PI; // radians
			// How far you can orbit horizontally, upper and lower limits.
			// If set, the interval [ min, max ] must be a sub-interval of [ - 2 PI, 2 PI ], with ( max - min < 2 PI )
			this.minAzimuthAngle = - Infinity; // radians
			this.maxAzimuthAngle = Infinity; // radians
			// Set to true to enable damping (inertia)
			// If damping is enabled, you must call controls.update() in your animation loop
			this.enableDamping = false;
			this.dampingFactor = 0.05;
			// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
			// Set to false to disable zooming
			this.enableZoom = true;
			this.zoomSpeed = 1.0;
			// Set to false to disable rotating
			this.enableRotate = true;
			this.rotateSpeed = 1.0;
			// Set to false to disable panning
			this.enablePan = true;
			this.panSpeed = 1.0;
			this.screenSpacePanning = true; // if false, pan orthogonal to world-space direction camera.up
			this.keyPanSpeed = 7.0;	// pixels moved per arrow key push
			this.zoomToCursor = false;
			// Set to true to automatically rotate around the target
			// If auto-rotate is enabled, you must call controls.update() in your animation loop
			this.autoRotate = false;
			this.autoRotateSpeed = 2.0; // 30 seconds per orbit when fps is 60
			// The four arrow keys
			this.keys = { LEFT: 'ArrowLeft', UP: 'ArrowUp', RIGHT: 'ArrowRight', BOTTOM: 'ArrowDown' };
			// Mouse buttons
			this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN };
			// Touch fingers
			this.touches = { ONE: TOUCH.ROTATE, TWO: TOUCH.DOLLY_PAN };
			// for reset
			this.target0 = this.target.clone();
			this.position0 = this.object.position.clone();
			this.zoom0 = this.object.zoom;
			// the target DOM element for key events
			this._domElementKeyEvents = null;
			//
			// public methods
			//
			this.getPolarAngle = function () {
				return spherical.phi;
			};
			this.getAzimuthalAngle = function () {
				return spherical.theta;
			};
			this.getDistance = function () {
				return this.object.position.distanceTo( this.target );
			};
			this.listenToKeyEvents = function ( domElement ) {
				domElement.addEventListener( 'keydown', onKeyDown );
				this._domElementKeyEvents = domElement;
			};
			this.stopListenToKeyEvents = function () {
				this._domElementKeyEvents.removeEventListener( 'keydown', onKeyDown );
				this._domElementKeyEvents = null;
			};
			this.saveState = function () {
				scope.target0.copy( scope.target );
				scope.position0.copy( scope.object.position );
				scope.zoom0 = scope.object.zoom;
			};
			this.reset = function () {
				scope.target.copy( scope.target0 );
				scope.object.position.copy( scope.position0 );
				scope.object.zoom = scope.zoom0;
				scope.object.updateProjectionMatrix();
				scope.dispatchEvent( _changeEvent );
				scope.update();
				state = STATE.NONE;
			};
			// this method is exposed, but perhaps it would be better if we can make it private...
			this.update = function () {
				const offset = new Vector3();
				// so camera.up is the orbit axis
				const quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) );
				const quatInverse = quat.clone().invert();
				const lastPosition = new Vector3();
				const lastQuaternion = new Quaternion();
				const lastTargetPosition = new Vector3();
				const twoPI = 2 * Math.PI;
				return function update( deltaTime = null ) {
					const position = scope.object.position;
					offset.copy( position ).sub( scope.target );
					// rotate offset to "y-axis-is-up" space
					offset.applyQuaternion( quat );
					// angle from z-axis around y-axis
					spherical.setFromVector3( offset );
					if ( scope.autoRotate && state === STATE.NONE ) {
						rotateLeft( getAutoRotationAngle( deltaTime ) );
					}
					if ( scope.enableDamping ) {
						spherical.theta += sphericalDelta.theta * scope.dampingFactor;
						spherical.phi += sphericalDelta.phi * scope.dampingFactor;
					} else {
						spherical.theta += sphericalDelta.theta;
						spherical.phi += sphericalDelta.phi;
					}
					// restrict theta to be between desired limits
					let min = scope.minAzimuthAngle;
					let max = scope.maxAzimuthAngle;
					if ( isFinite( min ) && isFinite( max ) ) {
						if ( min < - Math.PI ) min += twoPI; else if ( min > Math.PI ) min -= twoPI;
						if ( max < - Math.PI ) max += twoPI; else if ( max > Math.PI ) max -= twoPI;
						if ( min <= max ) {
							spherical.theta = Math.max( min, Math.min( max, spherical.theta ) );
						} else {
							spherical.theta = ( spherical.theta > ( min + max ) / 2 ) ?
								Math.max( min, spherical.theta ) :
								Math.min( max, spherical.theta );
						}
					}
					// restrict phi to be between desired limits
					spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );
					spherical.makeSafe();
					// move target to panned location
					if ( scope.enableDamping === true ) {
						scope.target.addScaledVector( panOffset, scope.dampingFactor );
					} else {
						scope.target.add( panOffset );
					}
					// Limit the target distance from the cursor to create a sphere around the center of interest
					scope.target.sub( scope.cursor );
					scope.target.clampLength( scope.minTargetRadius, scope.maxTargetRadius );
					scope.target.add( scope.cursor );
					let zoomChanged = false;
					// adjust the camera position based on zoom only if we're not zooming to the cursor or if it's an ortho camera
					// we adjust zoom later in these cases
					if ( scope.zoomToCursor && performCursorZoom || scope.object.isOrthographicCamera ) {
						spherical.radius = clampDistance( spherical.radius );
					} else {
						const prevRadius = spherical.radius;
						spherical.radius = clampDistance( spherical.radius * scale );
						zoomChanged = prevRadius != spherical.radius;
					}
					offset.setFromSpherical( spherical );
					// rotate offset back to "camera-up-vector-is-up" space
					offset.applyQuaternion( quatInverse );
					position.copy( scope.target ).add( offset );
					scope.object.lookAt( scope.target );
					if ( scope.enableDamping === true ) {
						sphericalDelta.theta *= ( 1 - scope.dampingFactor );
						sphericalDelta.phi *= ( 1 - scope.dampingFactor );
						panOffset.multiplyScalar( 1 - scope.dampingFactor );
					} else {
						sphericalDelta.set( 0, 0, 0 );
						panOffset.set( 0, 0, 0 );
					}
					// adjust camera position
					if ( scope.zoomToCursor && performCursorZoom ) {
						let newRadius = null;
						if ( scope.object.isPerspectiveCamera ) {
							// move the camera down the pointer ray
							// this method avoids floating point error
							const prevRadius = offset.length();
							newRadius = clampDistance( prevRadius * scale );
							const radiusDelta = prevRadius - newRadius;
							scope.object.position.addScaledVector( dollyDirection, radiusDelta );
							scope.object.updateMatrixWorld();
							zoomChanged = !! radiusDelta;
						} else if ( scope.object.isOrthographicCamera ) {
							// adjust the ortho camera position based on zoom changes
							const mouseBefore = new Vector3( mouse.x, mouse.y, 0 );
							mouseBefore.unproject( scope.object );
							const prevZoom = scope.object.zoom;
							scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / scale ) );
							scope.object.updateProjectionMatrix();
							zoomChanged = prevZoom !== scope.object.zoom;
							const mouseAfter = new Vector3( mouse.x, mouse.y, 0 );
							mouseAfter.unproject( scope.object );
							scope.object.position.sub( mouseAfter ).add( mouseBefore );
							scope.object.updateMatrixWorld();
							newRadius = offset.length();
						} else {
							console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - zoom to cursor disabled.' );
							scope.zoomToCursor = false;
						}
						// handle the placement of the target
						if ( newRadius !== null ) {
							if ( this.screenSpacePanning ) {
								// position the orbit target in front of the new camera position
								scope.target.set( 0, 0, - 1 )
									.transformDirection( scope.object.matrix )
									.multiplyScalar( newRadius )
									.add( scope.object.position );
							} else {
								// get the ray and translation plane to compute target
								_ray.origin.copy( scope.object.position );
								_ray.direction.set( 0, 0, - 1 ).transformDirection( scope.object.matrix );
								// if the camera is 20 degrees above the horizon then don't adjust the focus target to avoid
								// extremely large values
								if ( Math.abs( scope.object.up.dot( _ray.direction ) ) < TILT_LIMIT ) {
									object.lookAt( scope.target );
								} else {
									_plane.setFromNormalAndCoplanarPoint( scope.object.up, scope.target );
									_ray.intersectPlane( _plane, scope.target );
								}
							}
						}
					} else if ( scope.object.isOrthographicCamera ) {
						const prevZoom = scope.object.zoom;
						scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / scale ) );
						if ( prevZoom !== scope.object.zoom ) {
							scope.object.updateProjectionMatrix();
							zoomChanged = true;
						}
					}
					scale = 1;
					performCursorZoom = false;
					// update condition is:
					// min(camera displacement, camera rotation in radians)^2 > EPS
					// using small-angle approximation cos(x/2) = 1 - x^2 / 8
					if ( zoomChanged ||
						lastPosition.distanceToSquared( scope.object.position ) > EPS ||
						8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ||
						lastTargetPosition.distanceToSquared( scope.target ) > EPS ) {
						scope.dispatchEvent( _changeEvent );
						lastPosition.copy( scope.object.position );
						lastQuaternion.copy( scope.object.quaternion );
						lastTargetPosition.copy( scope.target );
						return true;
					}
					return false;
				};
			}();
			this.dispose = function () {
				scope.domElement.removeEventListener( 'contextmenu', onContextMenu );
				scope.domElement.removeEventListener( 'pointerdown', onPointerDown );
				scope.domElement.removeEventListener( 'pointercancel', onPointerUp );
				scope.domElement.removeEventListener( 'wheel', onMouseWheel );
				scope.domElement.removeEventListener( 'pointermove', onPointerMove );
				scope.domElement.removeEventListener( 'pointerup', onPointerUp );
				const document = scope.domElement.getRootNode(); // offscreen canvas compatibility
				document.removeEventListener( 'keydown', interceptControlDown, { capture: true } );
				if ( scope._domElementKeyEvents !== null ) {
					scope._domElementKeyEvents.removeEventListener( 'keydown', onKeyDown );
					scope._domElementKeyEvents = null;
				}
				//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?
			};
			//
			// internals
			//
			const scope = this;
			const STATE = {
				NONE: - 1,
				ROTATE: 0,
				DOLLY: 1,
				PAN: 2,
				TOUCH_ROTATE: 3,
				TOUCH_PAN: 4,
				TOUCH_DOLLY_PAN: 5,
				TOUCH_DOLLY_ROTATE: 6
			};
			let state = STATE.NONE;
			const EPS = 0.000001;
			// current position in spherical coordinates
			const spherical = new Spherical();
			const sphericalDelta = new Spherical();
			let scale = 1;
			const panOffset = new Vector3();
			const rotateStart = new Vector2();
			const rotateEnd = new Vector2();
			const rotateDelta = new Vector2();
			const panStart = new Vector2();
			const panEnd = new Vector2();
			const panDelta = new Vector2();
			const dollyStart = new Vector2();
			const dollyEnd = new Vector2();
			const dollyDelta = new Vector2();
			const dollyDirection = new Vector3();
			const mouse = new Vector2();
			let performCursorZoom = false;
			const pointers = [];
			const pointerPositions = {};
			let controlActive = false;
			function getAutoRotationAngle( deltaTime ) {
				if ( deltaTime !== null ) {
					return ( 2 * Math.PI / 60 * scope.autoRotateSpeed ) * deltaTime;
				} else {
					return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;
				}
			}
			function getZoomScale( delta ) {
				const normalizedDelta = Math.abs( delta * 0.01 );
				return Math.pow( 0.95, scope.zoomSpeed * normalizedDelta );
			}
			function rotateLeft( angle ) {
				sphericalDelta.theta -= angle;
			}
			function rotateUp( angle ) {
				sphericalDelta.phi -= angle;
			}
			const panLeft = function () {
				const v = new Vector3();
				return function panLeft( distance, objectMatrix ) {
					v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
					v.multiplyScalar( - distance );
					panOffset.add( v );
				};
			}();
			const panUp = function () {
				const v = new Vector3();
				return function panUp( distance, objectMatrix ) {
					if ( scope.screenSpacePanning === true ) {
						v.setFromMatrixColumn( objectMatrix, 1 );
					} else {
						v.setFromMatrixColumn( objectMatrix, 0 );
						v.crossVectors( scope.object.up, v );
					}
					v.multiplyScalar( distance );
					panOffset.add( v );
				};
			}();
			// deltaX and deltaY are in pixels; right and down are positive
			const pan = function () {
				const offset = new Vector3();
				return function pan( deltaX, deltaY ) {
					const element = scope.domElement;
					if ( scope.object.isPerspectiveCamera ) {
						// perspective
						const position = scope.object.position;
						offset.copy( position ).sub( scope.target );
						let targetDistance = offset.length();
						// half of the fov is center to top of screen
						targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );
						// we use only clientHeight here so aspect ratio does not distort speed
						panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
						panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );
					} else if ( scope.object.isOrthographicCamera ) {
						// orthographic
						panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
						panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );
					} else {
						// camera neither orthographic nor perspective
						console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
						scope.enablePan = false;
					}
				};
			}();
			function dollyOut( dollyScale ) {
				if ( scope.object.isPerspectiveCamera || scope.object.isOrthographicCamera ) {
					scale /= dollyScale;
				} else {
					console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
					scope.enableZoom = false;
				}
			}
			function dollyIn( dollyScale ) {
				if ( scope.object.isPerspectiveCamera || scope.object.isOrthographicCamera ) {
					scale *= dollyScale;
				} else {
					console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
					scope.enableZoom = false;
				}
			}
			function updateZoomParameters( x, y ) {
				if ( ! scope.zoomToCursor ) {
					return;
				}
				performCursorZoom = true;
				const rect = scope.domElement.getBoundingClientRect();
				const dx = x - rect.left;
				const dy = y - rect.top;
				const w = rect.width;
				const h = rect.height;
				mouse.x = ( dx / w ) * 2 - 1;
				mouse.y = - ( dy / h ) * 2 + 1;
				dollyDirection.set( mouse.x, mouse.y, 1 ).unproject( scope.object ).sub( scope.object.position ).normalize();
			}
			function clampDistance( dist ) {
				return Math.max( scope.minDistance, Math.min( scope.maxDistance, dist ) );
			}
			//
			// event callbacks - update the object state
			//
			function handleMouseDownRotate( event ) {
				rotateStart.set( event.clientX, event.clientY );
			}
			function handleMouseDownDolly( event ) {
				updateZoomParameters( event.clientX, event.clientX );
				dollyStart.set( event.clientX, event.clientY );
			}
			function handleMouseDownPan( event ) {
				panStart.set( event.clientX, event.clientY );
			}
			function handleMouseMoveRotate( event ) {
				rotateEnd.set( event.clientX, event.clientY );
				rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );
				const element = scope.domElement;
				rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height
				rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );
				rotateStart.copy( rotateEnd );
				scope.update();
			}
			function handleMouseMoveDolly( event ) {
				dollyEnd.set( event.clientX, event.clientY );
				dollyDelta.subVectors( dollyEnd, dollyStart );
				if ( dollyDelta.y > 0 ) {
					dollyOut( getZoomScale( dollyDelta.y ) );
				} else if ( dollyDelta.y < 0 ) {
					dollyIn( getZoomScale( dollyDelta.y ) );
				}
				dollyStart.copy( dollyEnd );
				scope.update();
			}
			function handleMouseMovePan( event ) {
				panEnd.set( event.clientX, event.clientY );
				panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );
				pan( panDelta.x, panDelta.y );
				panStart.copy( panEnd );
				scope.update();
			}
			function handleMouseWheel( event ) {
				updateZoomParameters( event.clientX, event.clientY );
				if ( event.deltaY < 0 ) {
					dollyIn( getZoomScale( event.deltaY ) );
				} else if ( event.deltaY > 0 ) {
					dollyOut( getZoomScale( event.deltaY ) );
				}
				scope.update();
			}
			function handleKeyDown( event ) {
				let needsUpdate = false;
				switch ( event.code ) {
					case scope.keys.UP:
						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
							rotateUp( 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );
						} else {
							pan( 0, scope.keyPanSpeed );
						}
						needsUpdate = true;
						break;
					case scope.keys.BOTTOM:
						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
							rotateUp( - 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );
						} else {
							pan( 0, - scope.keyPanSpeed );
						}
						needsUpdate = true;
						break;
					case scope.keys.LEFT:
						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
							rotateLeft( 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );
						} else {
							pan( scope.keyPanSpeed, 0 );
						}
						needsUpdate = true;
						break;
					case scope.keys.RIGHT:
						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
							rotateLeft( - 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight );
						} else {
							pan( - scope.keyPanSpeed, 0 );
						}
						needsUpdate = true;
						break;
				}
				if ( needsUpdate ) {
					// prevent the browser from scrolling on cursor keys
					event.preventDefault();
					scope.update();
				}
			}
			function handleTouchStartRotate( event ) {
				if ( pointers.length === 1 ) {
					rotateStart.set( event.pageX, event.pageY );
				} else {
					const position = getSecondPointerPosition( event );
					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );
					rotateStart.set( x, y );
				}
			}
			function handleTouchStartPan( event ) {
				if ( pointers.length === 1 ) {
					panStart.set( event.pageX, event.pageY );
				} else {
					const position = getSecondPointerPosition( event );
					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );
					panStart.set( x, y );
				}
			}
			function handleTouchStartDolly( event ) {
				const position = getSecondPointerPosition( event );
				const dx = event.pageX - position.x;
				const dy = event.pageY - position.y;
				const distance = Math.sqrt( dx * dx + dy * dy );
				dollyStart.set( 0, distance );
			}
			function handleTouchStartDollyPan( event ) {
				if ( scope.enableZoom ) handleTouchStartDolly( event );
				if ( scope.enablePan ) handleTouchStartPan( event );
			}
			function handleTouchStartDollyRotate( event ) {
				if ( scope.enableZoom ) handleTouchStartDolly( event );
				if ( scope.enableRotate ) handleTouchStartRotate( event );
			}
			function handleTouchMoveRotate( event ) {
				if ( pointers.length == 1 ) {
					rotateEnd.set( event.pageX, event.pageY );
				} else {
					const position = getSecondPointerPosition( event );
					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );
					rotateEnd.set( x, y );
				}
				rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );
				const element = scope.domElement;
				rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height
				rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );
				rotateStart.copy( rotateEnd );
			}
			function handleTouchMovePan( event ) {
				if ( pointers.length === 1 ) {
					panEnd.set( event.pageX, event.pageY );
				} else {
					const position = getSecondPointerPosition( event );
					const x = 0.5 * ( event.pageX + position.x );
					const y = 0.5 * ( event.pageY + position.y );
					panEnd.set( x, y );
				}
				panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );
				pan( panDelta.x, panDelta.y );
				panStart.copy( panEnd );
			}
			function handleTouchMoveDolly( event ) {
				const position = getSecondPointerPosition( event );
				const dx = event.pageX - position.x;
				const dy = event.pageY - position.y;
				const distance = Math.sqrt( dx * dx + dy * dy );
				dollyEnd.set( 0, distance );
				dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) );
				dollyOut( dollyDelta.y );
				dollyStart.copy( dollyEnd );
				const centerX = ( event.pageX + position.x ) * 0.5;
				const centerY = ( event.pageY + position.y ) * 0.5;
				updateZoomParameters( centerX, centerY );
			}
			function handleTouchMoveDollyPan( event ) {
				if ( scope.enableZoom ) handleTouchMoveDolly( event );
				if ( scope.enablePan ) handleTouchMovePan( event );
			}
			function handleTouchMoveDollyRotate( event ) {
				if ( scope.enableZoom ) handleTouchMoveDolly( event );
				if ( scope.enableRotate ) handleTouchMoveRotate( event );
			}
			//
			// event handlers - FSM: listen for events and reset state
			//
			function onPointerDown( event ) {
				if ( scope.enabled === false ) return;
				if ( pointers.length === 0 ) {
					scope.domElement.setPointerCapture( event.pointerId );
					scope.domElement.addEventListener( 'pointermove', onPointerMove );
					scope.domElement.addEventListener( 'pointerup', onPointerUp );
				}
				//
				if ( isTrackingPointer( event ) ) return;
				//
				addPointer( event );
				if ( event.pointerType === 'touch' ) {
					onTouchStart( event );
				} else {
					onMouseDown( event );
				}
			}
			function onPointerMove( event ) {
				if ( scope.enabled === false ) return;
				if ( event.pointerType === 'touch' ) {
					onTouchMove( event );
				} else {
					onMouseMove( event );
				}
			}
			function onPointerUp( event ) {
				removePointer( event );
				switch ( pointers.length ) {
					case 0:
						scope.domElement.releasePointerCapture( event.pointerId );
						scope.domElement.removeEventListener( 'pointermove', onPointerMove );
						scope.domElement.removeEventListener( 'pointerup', onPointerUp );
						scope.dispatchEvent( _endEvent );
						state = STATE.NONE;
						break;
					case 1:
						const pointerId = pointers[ 0 ];
						const position = pointerPositions[ pointerId ];
						// minimal placeholder event - allows state correction on pointer-up
						onTouchStart( { pointerId: pointerId, pageX: position.x, pageY: position.y } );
						break;
				}
			}
			function onMouseDown( event ) {
				let mouseAction;
				switch ( event.button ) {
					case 0:
						mouseAction = scope.mouseButtons.LEFT;
						break;
					case 1:
						mouseAction = scope.mouseButtons.MIDDLE;
						break;
					case 2:
						mouseAction = scope.mouseButtons.RIGHT;
						break;
					default:
						mouseAction = - 1;
				}
				switch ( mouseAction ) {
					case MOUSE.DOLLY:
						if ( scope.enableZoom === false ) return;
						handleMouseDownDolly( event );
						state = STATE.DOLLY;
						break;
					case MOUSE.ROTATE:
						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
							if ( scope.enablePan === false ) return;
							handleMouseDownPan( event );
							state = STATE.PAN;
						} else {
							if ( scope.enableRotate === false ) return;
							handleMouseDownRotate( event );
							state = STATE.ROTATE;
						}
						break;
					case MOUSE.PAN:
						if ( event.ctrlKey || event.metaKey || event.shiftKey ) {
							if ( scope.enableRotate === false ) return;
							handleMouseDownRotate( event );
							state = STATE.ROTATE;
						} else {
							if ( scope.enablePan === false ) return;
							handleMouseDownPan( event );
							state = STATE.PAN;
						}
						break;
					default:
						state = STATE.NONE;
				}
				if ( state !== STATE.NONE ) {
					scope.dispatchEvent( _startEvent );
				}
			}
			function onMouseMove( event ) {
				switch ( state ) {
					case STATE.ROTATE:
						if ( scope.enableRotate === false ) return;
						handleMouseMoveRotate( event );
						break;
					case STATE.DOLLY:
						if ( scope.enableZoom === false ) return;
						handleMouseMoveDolly( event );
						break;
					case STATE.PAN:
						if ( scope.enablePan === false ) return;
						handleMouseMovePan( event );
						break;
				}
			}
			function onMouseWheel( event ) {
				if ( scope.enabled === false || scope.enableZoom === false || state !== STATE.NONE ) return;
				event.preventDefault();
				scope.dispatchEvent( _startEvent );
				handleMouseWheel( customWheelEvent( event ) );
				scope.dispatchEvent( _endEvent );
			}
			function customWheelEvent( event ) {
				const mode = event.deltaMode;
				// minimal wheel event altered to meet delta-zoom demand
				const newEvent = {
					clientX: event.clientX,
					clientY: event.clientY,
					deltaY: event.deltaY,
				};
				switch ( mode ) {
					case 1: // LINE_MODE
						newEvent.deltaY *= 16;
						break;
					case 2: // PAGE_MODE
						newEvent.deltaY *= 100;
						break;
				}
				// detect if event was triggered by pinching
				if ( event.ctrlKey && ! controlActive ) {
					newEvent.deltaY *= 10;
				}
				return newEvent;
			}
			function interceptControlDown( event ) {
				if ( event.key === 'Control' ) {
					controlActive = true;
					const document = scope.domElement.getRootNode(); // offscreen canvas compatibility
					document.addEventListener( 'keyup', interceptControlUp, { passive: true, capture: true } );
				}
			}
			function interceptControlUp( event ) {
				if ( event.key === 'Control' ) {
					controlActive = false;
					const document = scope.domElement.getRootNode(); // offscreen canvas compatibility
					document.removeEventListener( 'keyup', interceptControlUp, { passive: true, capture: true } );
				}
			}
			function onKeyDown( event ) {
				if ( scope.enabled === false || scope.enablePan === false ) return;
				handleKeyDown( event );
			}
			function onTouchStart( event ) {
				trackPointer( event );
				switch ( pointers.length ) {
					case 1:
						switch ( scope.touches.ONE ) {
							case TOUCH.ROTATE:
								if ( scope.enableRotate === false ) return;
								handleTouchStartRotate( event );
								state = STATE.TOUCH_ROTATE;
								break;
							case TOUCH.PAN:
								if ( scope.enablePan === false ) return;
								handleTouchStartPan( event );
								state = STATE.TOUCH_PAN;
								break;
							default:
								state = STATE.NONE;
						}
						break;
					case 2:
						switch ( scope.touches.TWO ) {
							case TOUCH.DOLLY_PAN:
								if ( scope.enableZoom === false && scope.enablePan === false ) return;
								handleTouchStartDollyPan( event );
								state = STATE.TOUCH_DOLLY_PAN;
								break;
							case TOUCH.DOLLY_ROTATE:
								if ( scope.enableZoom === false && scope.enableRotate === false ) return;
								handleTouchStartDollyRotate( event );
								state = STATE.TOUCH_DOLLY_ROTATE;
								break;
							default:
								state = STATE.NONE;
						}
						break;
					default:
						state = STATE.NONE;
				}
				if ( state !== STATE.NONE ) {
					scope.dispatchEvent( _startEvent );
				}
			}
			function onTouchMove( event ) {
				trackPointer( event );
				switch ( state ) {
					case STATE.TOUCH_ROTATE:
						if ( scope.enableRotate === false ) return;
						handleTouchMoveRotate( event );
						scope.update();
						break;
					case STATE.TOUCH_PAN:
						if ( scope.enablePan === false ) return;
						handleTouchMovePan( event );
						scope.update();
						break;
					case STATE.TOUCH_DOLLY_PAN:
						if ( scope.enableZoom === false && scope.enablePan === false ) return;
						handleTouchMoveDollyPan( event );
						scope.update();
						break;
					case STATE.TOUCH_DOLLY_ROTATE:
						if ( scope.enableZoom === false && scope.enableRotate === false ) return;
						handleTouchMoveDollyRotate( event );
						scope.update();
						break;
					default:
						state = STATE.NONE;
				}
			}
			function onContextMenu( event ) {
				if ( scope.enabled === false ) return;
				event.preventDefault();
			}
			function addPointer( event ) {
				pointers.push( event.pointerId );
			}
			function removePointer( event ) {
				delete pointerPositions[ event.pointerId ];
				for ( let i = 0; i < pointers.length; i ++ ) {
					if ( pointers[ i ] == event.pointerId ) {
						pointers.splice( i, 1 );
						return;
					}
				}
			}
			function isTrackingPointer( event ) {
				for ( let i = 0; i < pointers.length; i ++ ) {
					if ( pointers[ i ] == event.pointerId ) return true;
				}
				return false;
			}
			function trackPointer( event ) {
				let position = pointerPositions[ event.pointerId ];
				if ( position === undefined ) {
					position = new Vector2();
					pointerPositions[ event.pointerId ] = position;
				}
				position.set( event.pageX, event.pageY );
			}
			function getSecondPointerPosition( event ) {
				const pointerId = ( event.pointerId === pointers[ 0 ] ) ? pointers[ 1 ] : pointers[ 0 ];
				return pointerPositions[ pointerId ];
			}
			//
			scope.domElement.addEventListener( 'contextmenu', onContextMenu );
			scope.domElement.addEventListener( 'pointerdown', onPointerDown );
			scope.domElement.addEventListener( 'pointercancel', onPointerUp );
			scope.domElement.addEventListener( 'wheel', onMouseWheel, { passive: false } );
			const document = scope.domElement.getRootNode(); // offscreen canvas compatibility
			document.addEventListener( 'keydown', interceptControlDown, { passive: true, capture: true } );
			// force an update at start
			this.update();
		}
	}
	//export { OrbitControls };
	class RoomEnvironment extends Scene {
		constructor( renderer = null ) {
			super();
			const geometry = new BoxGeometry();
			geometry.deleteAttribute( 'uv' );
			const roomMaterial = new MeshStandardMaterial( { side: BackSide } );
			const boxMaterial = new MeshStandardMaterial();
			let intensity = 5;
			if ( renderer !== null && renderer._useLegacyLights === false ) intensity = 900;
			const mainLight = new PointLight( 0xffffff, intensity, 28, 2 );
			mainLight.position.set( 0.418, 16.199, 0.300 );
			this.add( mainLight );
			const room = new Mesh( geometry, roomMaterial );
			room.position.set( - 0.757, 13.219, 0.717 );
			room.scale.set( 31.713, 28.305, 28.591 );
			this.add( room );
			const box1 = new Mesh( geometry, boxMaterial );
			box1.position.set( - 10.906, 2.009, 1.846 );
			box1.rotation.set( 0, - 0.195, 0 );
			box1.scale.set( 2.328, 7.905, 4.651 );
			this.add( box1 );
			const box2 = new Mesh( geometry, boxMaterial );
			box2.position.set( - 5.607, - 0.754, - 0.758 );
			box2.rotation.set( 0, 0.994, 0 );
			box2.scale.set( 1.970, 1.534, 3.955 );
			this.add( box2 );
			const box3 = new Mesh( geometry, boxMaterial );
			box3.position.set( 6.167, 0.857, 7.803 );
			box3.rotation.set( 0, 0.561, 0 );
			box3.scale.set( 3.927, 6.285, 3.687 );
			this.add( box3 );
			const box4 = new Mesh( geometry, boxMaterial );
			box4.position.set( - 2.017, 0.018, 6.124 );
			box4.rotation.set( 0, 0.333, 0 );
			box4.scale.set( 2.002, 4.566, 2.064 );
			this.add( box4 );
			const box5 = new Mesh( geometry, boxMaterial );
			box5.position.set( 2.291, - 0.756, - 2.621 );
			box5.rotation.set( 0, - 0.286, 0 );
			box5.scale.set( 1.546, 1.552, 1.496 );
			this.add( box5 );
			const box6 = new Mesh( geometry, boxMaterial );
			box6.position.set( - 2.193, - 0.369, - 5.547 );
			box6.rotation.set( 0, 0.516, 0 );
			box6.scale.set( 3.875, 3.487, 2.986 );
			this.add( box6 );
			// -x right
			const light1 = new Mesh( geometry, createAreaLightMaterial( 50 ) );
			light1.position.set( - 16.116, 14.37, 8.208 );
			light1.scale.set( 0.1, 2.428, 2.739 );
			this.add( light1 );
			// -x left
			const light2 = new Mesh( geometry, createAreaLightMaterial( 50 ) );
			light2.position.set( - 16.109, 18.021, - 8.207 );
			light2.scale.set( 0.1, 2.425, 2.751 );
			this.add( light2 );
			// +x
			const light3 = new Mesh( geometry, createAreaLightMaterial( 17 ) );
			light3.position.set( 14.904, 12.198, - 1.832 );
			light3.scale.set( 0.15, 4.265, 6.331 );
			this.add( light3 );
			// +z
			const light4 = new Mesh( geometry, createAreaLightMaterial( 43 ) );
			light4.position.set( - 0.462, 8.89, 14.520 );
			light4.scale.set( 4.38, 5.441, 0.088 );
			this.add( light4 );
			// -z
			const light5 = new Mesh( geometry, createAreaLightMaterial( 20 ) );
			light5.position.set( 3.235, 11.486, - 12.541 );
			light5.scale.set( 2.5, 2.0, 0.1 );
			this.add( light5 );
			// +y
			const light6 = new Mesh( geometry, createAreaLightMaterial( 100 ) );
			light6.position.set( 0.0, 20.0, 0.0 );
			light6.scale.set( 1.0, 0.1, 1.0 );
			this.add( light6 );
		}
		dispose() {
			const resources = new Set();
			this.traverse( ( object ) => {
				if ( object.isMesh ) {
					resources.add( object.geometry );
					resources.add( object.material );
				}
			} );
			for ( const resource of resources ) {
				resource.dispose();
			}
		}
	}
	function createAreaLightMaterial( intensity ) {
		const material = new MeshBasicMaterial();
		material.color.setScalar( intensity );
		return material;
	}
	//export { RoomEnvironment };
	// Special surface finish tag types.
	// Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented
	const FINISH_TYPE_DEFAULT = 0;
	const FINISH_TYPE_CHROME = 1;
	const FINISH_TYPE_PEARLESCENT = 2;
	const FINISH_TYPE_RUBBER = 3;
	const FINISH_TYPE_MATTE_METALLIC = 4;
	const FINISH_TYPE_METAL = 5;
	// State machine to search a subobject path.
	// The LDraw standard establishes these various possible subfolders.
	const FILE_LOCATION_TRY_PARTS = 0;
	const FILE_LOCATION_TRY_P = 1;
	const FILE_LOCATION_TRY_MODELS = 2;
	const FILE_LOCATION_AS_IS = 3;
	const FILE_LOCATION_TRY_RELATIVE = 4;
	const FILE_LOCATION_TRY_ABSOLUTE = 5;
	const FILE_LOCATION_NOT_FOUND = 6;
	const MAIN_COLOUR_CODE = '16';
	const MAIN_EDGE_COLOUR_CODE = '24';
	const COLOR_SPACE_LDRAW = SRGBColorSpace;
	const _tempVec0 = new Vector3();
	const _tempVec1 = new Vector3();
	class LDrawConditionalLineMaterial extends ShaderMaterial {
		constructor( parameters ) {
			super( {
				uniforms: UniformsUtils.merge( [
					UniformsLib.fog,
					{
						diffuse: {
							value: new Color()
						},
						opacity: {
							value: 1.0
						}
					}
				] ),
				vertexShader: /* glsl */`
					attribute vec3 control0;
					attribute vec3 control1;
					attribute vec3 direction;
					varying float discardFlag;
					#include <common>
					#include <color_pars_vertex>
					#include <fog_pars_vertex>
					#include <logdepthbuf_pars_vertex>
					#include <clipping_planes_pars_vertex>
					void main() {
						#include <color_vertex>
						vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
						gl_Position = projectionMatrix * mvPosition;
						// Transform the line segment ends and control points into camera clip space
						vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 );
						vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 );
						vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
						vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 );
						c0.xy /= c0.w;
						c1.xy /= c1.w;
						p0.xy /= p0.w;
						p1.xy /= p1.w;
						// Get the direction of the segment and an orthogonal vector
						vec2 dir = p1.xy - p0.xy;
						vec2 norm = vec2( -dir.y, dir.x );
						// Get control point directions from the line
						vec2 c0dir = c0.xy - p1.xy;
						vec2 c1dir = c1.xy - p1.xy;
						// If the vectors to the controls points are pointed in different directions away
						// from the line segment then the line should not be drawn.
						float d0 = dot( normalize( norm ), normalize( c0dir ) );
						float d1 = dot( normalize( norm ), normalize( c1dir ) );
						discardFlag = float( sign( d0 ) != sign( d1 ) );
						#include <logdepthbuf_vertex>
						#include <clipping_planes_vertex>
						#include <fog_vertex>
					}
				`,
				fragmentShader: /* glsl */`
				uniform vec3 diffuse;
				uniform float opacity;
				varying float discardFlag;
				#include <common>
				#include <color_pars_fragment>
				#include <fog_pars_fragment>
				#include <logdepthbuf_pars_fragment>
				#include <clipping_planes_pars_fragment>
				void main() {
					if ( discardFlag > 0.5 ) discard;
					#include <clipping_planes_fragment>
					vec3 outgoingLight = vec3( 0.0 );
					vec4 diffuseColor = vec4( diffuse, opacity );
					#include <logdepthbuf_fragment>
					#include <color_fragment>
					outgoingLight = diffuseColor.rgb; // simple shader
					gl_FragColor = vec4( outgoingLight, diffuseColor.a );
					#include <tonemapping_fragment>
					#include <colorspace_fragment>
					#include <fog_fragment>
					#include <premultiplied_alpha_fragment>
				}
				`,
			} );
			Object.defineProperties( this, {
				opacity: {
					get: function () {
						return this.uniforms.opacity.value;
					},
					set: function ( value ) {
						this.uniforms.opacity.value = value;
					}
				},
				color: {
					get: function () {
						return this.uniforms.diffuse.value;
					}
				}
			} );
			this.setValues( parameters );
			this.isLDrawConditionalLineMaterial = true;
		}
	}
	class ConditionalLineSegments extends LineSegments {
		constructor( geometry, material ) {
			super( geometry, material );
			this.isConditionalLine = true;
		}
	}
	function generateFaceNormals( faces ) {
		for ( let i = 0, l = faces.length; i < l; i ++ ) {
			const face = faces[ i ];
			const vertices = face.vertices;
			const v0 = vertices[ 0 ];
			const v1 = vertices[ 1 ];
			const v2 = vertices[ 2 ];
			_tempVec0.subVectors( v1, v0 );
			_tempVec1.subVectors( v2, v1 );
			face.faceNormal = new Vector3()
				.crossVectors( _tempVec0, _tempVec1 )
				.normalize();
		}
	}
	//const _ray = new Ray();
	function smoothNormals( faces, lineSegments, checkSubSegments = false ) {
		// NOTE: 1e2 is pretty coarse but was chosen to quantize the resulting value because
		// it allows edges to be smoothed as expected (see minifig arms).
		// --
		// And the vector values are initialize multiplied by 1 + 1e-10 to account for floating
		// point errors on vertices along quantization boundaries. Ie after matrix multiplication
		// vertices that should be merged might be set to "1.7" and "1.6999..." meaning they won't
		// get merged. This added epsilon attempts to push these error values to the same quantized
		// value for the sake of hashing. See "AT-ST mini" dishes. See mrdoob/three#23169.
		const hashMultiplier = ( 1 + 1e-10 ) * 1e2;
		function hashVertex( v ) {
			const x = ~ ~ ( v.x * hashMultiplier );
			const y = ~ ~ ( v.y * hashMultiplier );
			const z = ~ ~ ( v.z * hashMultiplier );
			return `${ x },${ y },${ z }`;
		}
		function hashEdge( v0, v1 ) {
			return `${ hashVertex( v0 ) }_${ hashVertex( v1 ) }`;
		}
		// converts the two vertices to a ray with a normalized direction and origin of 0, 0, 0 projected
		// onto the original line.
		function toNormalizedRay( v0, v1, targetRay ) {
			targetRay.direction.subVectors( v1, v0 ).normalize();
			const scalar = v0.dot( targetRay.direction );
			targetRay.origin.copy( v0 ).addScaledVector( targetRay.direction, - scalar );
			return targetRay;
		}
		function hashRay( ray ) {
			return hashEdge( ray.origin, ray.direction );
		}
		const hardEdges = new Set();
		const hardEdgeRays = new Map();
		const halfEdgeList = {};
		const normals = [];
		// Save the list of hard edges by hash
		for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
			const ls = lineSegments[ i ];
			const vertices = ls.vertices;
			const v0 = vertices[ 0 ];
			const v1 = vertices[ 1 ];
			hardEdges.add( hashEdge( v0, v1 ) );
			hardEdges.add( hashEdge( v1, v0 ) );
			// only generate the hard edge ray map if we're checking subsegments because it's more expensive to check
			// and requires more memory.
			if ( checkSubSegments ) {
				// add both ray directions to the map
				const ray = toNormalizedRay( v0, v1, new Ray() );
				const rh1 = hashRay( ray );
				if ( ! hardEdgeRays.has( rh1 ) ) {
					toNormalizedRay( v1, v0, ray );
					const rh2 = hashRay( ray );
					const info = {
						ray,
						distances: [],
					};
					hardEdgeRays.set( rh1, info );
					hardEdgeRays.set( rh2, info );
				}
				// store both segments ends in min, max order in the distances array to check if a face edge is a
				// subsegment later.
				const info = hardEdgeRays.get( rh1 );
				let d0 = info.ray.direction.dot( v0 );
				let d1 = info.ray.direction.dot( v1 );
				if ( d0 > d1 ) {
					[ d0, d1 ] = [ d1, d0 ];
				}
				info.distances.push( d0, d1 );
			}
		}
		// track the half edges associated with each triangle
		for ( let i = 0, l = faces.length; i < l; i ++ ) {
			const tri = faces[ i ];
			const vertices = tri.vertices;
			const vertCount = vertices.length;
			for ( let i2 = 0; i2 < vertCount; i2 ++ ) {
				const index = i2;
				const next = ( i2 + 1 ) % vertCount;
				const v0 = vertices[ index ];
				const v1 = vertices[ next ];
				const hash = hashEdge( v0, v1 );
				// don't add the triangle if the edge is supposed to be hard
				if ( hardEdges.has( hash ) ) {
					continue;
				}
				// if checking subsegments then check to see if this edge lies on a hard edge ray and whether its within any ray bounds
				if ( checkSubSegments ) {
					toNormalizedRay( v0, v1, _ray );
					const rayHash = hashRay( _ray );
					if ( hardEdgeRays.has( rayHash ) ) {
						const info = hardEdgeRays.get( rayHash );
						const { ray, distances } = info;
						let d0 = ray.direction.dot( v0 );
						let d1 = ray.direction.dot( v1 );
						if ( d0 > d1 ) {
							[ d0, d1 ] = [ d1, d0 ];
						}
						// return early if the face edge is found to be a subsegment of a line edge meaning the edge will have "hard" normals
						let found = false;
						for ( let i = 0, l = distances.length; i < l; i += 2 ) {
							if ( d0 >= distances[ i ] && d1 <= distances[ i + 1 ] ) {
								found = true;
								break;
							}
						}
						if ( found ) {
							continue;
						}
					}
				}
				const info = {
					index: index,
					tri: tri
				};
				halfEdgeList[ hash ] = info;
			}
		}
		// Iterate until we've tried to connect all faces to share normals
		while ( true ) {
			// Stop if there are no more faces left
			let halfEdge = null;
			for ( const key in halfEdgeList ) {
				halfEdge = halfEdgeList[ key ];
				break;
			}
			if ( halfEdge === null ) {
				break;
			}
			// Exhaustively find all connected faces
			const queue = [ halfEdge ];
			while ( queue.length > 0 ) {
				// initialize all vertex normals in this triangle
				const tri = queue.pop().tri;
				const vertices = tri.vertices;
				const vertNormals = tri.normals;
				const faceNormal = tri.faceNormal;
				// Check if any edge is connected to another triangle edge
				const vertCount = vertices.length;
				for ( let i2 = 0; i2 < vertCount; i2 ++ ) {
					const index = i2;
					const next = ( i2 + 1 ) % vertCount;
					const v0 = vertices[ index ];
					const v1 = vertices[ next ];
					// delete this triangle from the list so it won't be found again
					const hash = hashEdge( v0, v1 );
					delete halfEdgeList[ hash ];
					const reverseHash = hashEdge( v1, v0 );
					const otherInfo = halfEdgeList[ reverseHash ];
					if ( otherInfo ) {
						const otherTri = otherInfo.tri;
						const otherIndex = otherInfo.index;
						const otherNormals = otherTri.normals;
						const otherVertCount = otherNormals.length;
						const otherFaceNormal = otherTri.faceNormal;
						// NOTE: If the angle between faces is > 67.5 degrees then assume it's
						// hard edge. There are some cases where the line segments do not line up exactly
						// with or span multiple triangle edges (see Lunar Vehicle wheels).
						if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) {
							continue;
						}
						// if this triangle has already been traversed then it won't be in
						// the halfEdgeList. If it has not then add it to the queue and delete
						// it so it won't be found again.
						if ( reverseHash in halfEdgeList ) {
							queue.push( otherInfo );
							delete halfEdgeList[ reverseHash ];
						}
						// share the first normal
						const otherNext = ( otherIndex + 1 ) % otherVertCount;
						if (
							vertNormals[ index ] && otherNormals[ otherNext ] &&
							vertNormals[ index ] !== otherNormals[ otherNext ]
						) {
							otherNormals[ otherNext ].norm.add( vertNormals[ index ].norm );
							vertNormals[ index ].norm = otherNormals[ otherNext ].norm;
						}
						let sharedNormal1 = vertNormals[ index ] || otherNormals[ otherNext ];
						if ( sharedNormal1 === null ) {
							// it's possible to encounter an edge of a triangle that has already been traversed meaning
							// both edges already have different normals defined and shared. To work around this we create
							// a wrapper object so when those edges are merged the normals can be updated everywhere.
							sharedNormal1 = { norm: new Vector3() };
							normals.push( sharedNormal1.norm );
						}
						if ( vertNormals[ index ] === null ) {
							vertNormals[ index ] = sharedNormal1;
							sharedNormal1.norm.add( faceNormal );
						}
						if ( otherNormals[ otherNext ] === null ) {
							otherNormals[ otherNext ] = sharedNormal1;
							sharedNormal1.norm.add( otherFaceNormal );
						}
						// share the second normal
						if (
							vertNormals[ next ] && otherNormals[ otherIndex ] &&
							vertNormals[ next ] !== otherNormals[ otherIndex ]
						) {
							otherNormals[ otherIndex ].norm.add( vertNormals[ next ].norm );
							vertNormals[ next ].norm = otherNormals[ otherIndex ].norm;
						}
						let sharedNormal2 = vertNormals[ next ] || otherNormals[ otherIndex ];
						if ( sharedNormal2 === null ) {
							sharedNormal2 = { norm: new Vector3() };
							normals.push( sharedNormal2.norm );
						}
						if ( vertNormals[ next ] === null ) {
							vertNormals[ next ] = sharedNormal2;
							sharedNormal2.norm.add( faceNormal );
						}
						if ( otherNormals[ otherIndex ] === null ) {
							otherNormals[ otherIndex ] = sharedNormal2;
							sharedNormal2.norm.add( otherFaceNormal );
						}
					}
				}
			}
		}
		// The normals of each face have been added up so now we average them by normalizing the vector.
		for ( let i = 0, l = normals.length; i < l; i ++ ) {
			normals[ i ].normalize();
		}
	}
	function isPartType( type ) {
		return type === 'Part' || type === 'Unofficial_Part';
	}
	function isPrimitiveType( type ) {
		return /primitive/i.test( type ) || type === 'Subpart';
	}
	class LineParser {
		constructor( line, lineNumber ) {
			this.line = line;
			this.lineLength = line.length;
			this.currentCharIndex = 0;
			this.currentChar = ' ';
			this.lineNumber = lineNumber;
		}
		seekNonSpace() {
			while ( this.currentCharIndex < this.lineLength ) {
				this.currentChar = this.line.charAt( this.currentCharIndex );
				if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) {
					return;
				}
				this.currentCharIndex ++;
			}
		}
		getToken() {
			const pos0 = this.currentCharIndex ++;
			// Seek space
			while ( this.currentCharIndex < this.lineLength ) {
				this.currentChar = this.line.charAt( this.currentCharIndex );
				if ( this.currentChar === ' ' || this.currentChar === '\t' ) {
					break;
				}
				this.currentCharIndex ++;
			}
			const pos1 = this.currentCharIndex;
			this.seekNonSpace();
			return this.line.substring( pos0, pos1 );
		}
		getVector() {
			return new Vector3( parseFloat( this.getToken() ), parseFloat( this.getToken() ), parseFloat( this.getToken() ) );
		}
		getRemainingString() {
			return this.line.substring( this.currentCharIndex, this.lineLength );
		}
		isAtTheEnd() {
			return this.currentCharIndex >= this.lineLength;
		}
		setToEnd() {
			this.currentCharIndex = this.lineLength;
		}
		getLineNumberString() {
			return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : '';
		}
	}
	// Fetches and parses an intermediate representation of LDraw parts files.
	class LDrawParsedCache {
		constructor( loader ) {
			this.loader = loader;
			this._cache = {};
		}
		cloneResult( original ) {
			const result = {};
			// vertices are transformed and normals computed before being converted to geometry
			// so these pieces must be cloned.
			result.faces = original.faces.map( face => {
				return {
					colorCode: face.colorCode,
					material: face.material,
					vertices: face.vertices.map( v => v.clone() ),
					normals: face.normals.map( () => null ),
					faceNormal: null
				};
			} );
			result.conditionalSegments = original.conditionalSegments.map( face => {
				return {
					colorCode: face.colorCode,
					material: face.material,
					vertices: face.vertices.map( v => v.clone() ),
					controlPoints: face.controlPoints.map( v => v.clone() )
				};
			} );
			result.lineSegments = original.lineSegments.map( face => {
				return {
					colorCode: face.colorCode,
					material: face.material,
					vertices: face.vertices.map( v => v.clone() )
				};
			} );
			// none if this is subsequently modified
			result.type = original.type;
			result.category = original.category;
			result.keywords = original.keywords;
			result.author = original.author;
			result.subobjects = original.subobjects;
			result.fileName = original.fileName;
			result.totalFaces = original.totalFaces;
			result.startingBuildingStep = original.startingBuildingStep;
			result.materials = original.materials;
			result.group = null;
			return result;
		}
		async fetchData( fileName ) {
			let triedLowerCase = false;
			let locationState = FILE_LOCATION_TRY_PARTS;
			while ( locationState !== FILE_LOCATION_NOT_FOUND ) {
				let subobjectURL = fileName;
				switch ( locationState ) {
					case FILE_LOCATION_AS_IS:
						locationState = locationState + 1;
						break;
					case FILE_LOCATION_TRY_PARTS:
						subobjectURL = 'parts/' + subobjectURL;
						locationState = locationState + 1;
						break;
					case FILE_LOCATION_TRY_P:
						subobjectURL = 'p/' + subobjectURL;
						locationState = locationState + 1;
						break;
					case FILE_LOCATION_TRY_MODELS:
						subobjectURL = 'models/' + subobjectURL;
						locationState = locationState + 1;
						break;
					case FILE_LOCATION_TRY_RELATIVE:
						subobjectURL = fileName.substring( 0, fileName.lastIndexOf( '/' ) + 1 ) + subobjectURL;
						locationState = locationState + 1;
						break;
					case FILE_LOCATION_TRY_ABSOLUTE:
						if ( triedLowerCase ) {
							// Try absolute path
							locationState = FILE_LOCATION_NOT_FOUND;
						} else {
							// Next attempt is lower case
							fileName = fileName.toLowerCase();
							subobjectURL = fileName;
							triedLowerCase = true;
							locationState = FILE_LOCATION_TRY_PARTS;
						}
						break;
				}
				const loader = this.loader;
				const fileLoader = new FileLoader( loader.manager );
				fileLoader.setPath( loader.partsLibraryPath );
				fileLoader.setRequestHeader( loader.requestHeader );
				fileLoader.setWithCredentials( loader.withCredentials );
				try {
					const text = await fileLoader.loadAsync( subobjectURL );
					return text;
				} catch ( _ ) {
					continue;
				}
			}
			throw new Error( 'LDrawLoader: Subobject "' + fileName + '" could not be loaded.' );
		}
		parse( text, fileName = null ) {
			const loader = this.loader;
			// final results
			const faces = [];
			const lineSegments = [];
			const conditionalSegments = [];
			const subobjects = [];
			const materials = {};
			const getLocalMaterial = colorCode => {
				return materials[ colorCode ] || null;
			};
			let type = 'Model';
			let category = null;
			let keywords = null;
			let author = null;
			let totalFaces = 0;
			// split into lines
			if ( text.indexOf( '\r\n' ) !== - 1 ) {
				// This is faster than String.split with regex that splits on both
				text = text.replace( /\r\n/g, '\n' );
			}
			const lines = text.split( '\n' );
			const numLines = lines.length;
			let parsingEmbeddedFiles = false;
			let currentEmbeddedFileName = null;
			let currentEmbeddedText = null;
			let bfcCertified = false;
			let bfcCCW = true;
			let bfcInverted = false;
			let bfcCull = true;
			let startingBuildingStep = false;
			try{
				// Parse all line commands
				for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) {
					const line = lines[ lineIndex ];
					if ( line.length === 0 ) continue;
					if ( parsingEmbeddedFiles ) {
						if ( line.startsWith( '0 FILE ' ) ) {
							// Save previous embedded file in the cache
							this.setData( currentEmbeddedFileName, currentEmbeddedText );
							// New embedded text file
							currentEmbeddedFileName = line.substring( 7 );
							currentEmbeddedText = '';
						} else {
							currentEmbeddedText += line + '\n';
						}
						continue;
					}
					const lp = new LineParser( line, lineIndex + 1 );
					lp.seekNonSpace();
					if ( lp.isAtTheEnd() ) {
						// Empty line
						continue;
					}
					// Parse the line type
					const lineType = lp.getToken();
					let material;
					let colorCode;
					let segment;
					let ccw;
					let doubleSided;
					let v0, v1, v2, v3, c0, c1;
					switch ( lineType ) {
						// Line type 0: Comment or META
						case '0':
							// Parse meta directive
							const meta = lp.getToken();
							if ( meta ) {
								switch ( meta ) {
									case '!LDRAW_ORG':
										type = lp.getToken();
										break;
									case '!COLOUR':
										material = loader.parseColorMetaDirective( lp );
										if ( material ) {
											materials[ material.userData.code ] = material;
										}	else {
											console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() );
										}
										break;
									case '!CATEGORY':
										category = lp.getToken();
										break;
									case '!KEYWORDS':
										const newKeywords = lp.getRemainingString().split( ',' );
										if ( newKeywords.length > 0 ) {
											if ( ! keywords ) {
												keywords = [];
											}
											newKeywords.forEach( function ( keyword ) {
												keywords.push( keyword.trim() );
											} );
										}
										break;
									case 'FILE':
										if ( lineIndex > 0 ) {
											// Start embedded text files parsing
											parsingEmbeddedFiles = true;
											currentEmbeddedFileName = lp.getRemainingString();
											currentEmbeddedText = '';
											bfcCertified = false;
											bfcCCW = true;
										}
										break;
									case 'BFC':
										// Changes to the backface culling state
										while ( ! lp.isAtTheEnd() ) {
											const token = lp.getToken();
											switch ( token ) {
												case 'CERTIFY':
												case 'NOCERTIFY':
													bfcCertified = token === 'CERTIFY';
													bfcCCW = true;
													break;
												case 'CW':
												case 'CCW':
													bfcCCW = token === 'CCW';
													break;
												case 'INVERTNEXT':
													bfcInverted = true;
													break;
												case 'CLIP':
												case 'NOCLIP':
													bfcCull = token === 'CLIP';
													break;
												default:
													console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' );
													break;
											}
										}
										break;
									case 'STEP':
										startingBuildingStep = true;
										break;
									case 'Author:':
										author = lp.getToken();
										break;
									default:
										// Other meta directives are not implemented
										break;
								}
							}
							break;
							// Line type 1: Sub-object file
						case '1':
							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							const posX = parseFloat( lp.getToken() );
							const posY = parseFloat( lp.getToken() );
							const posZ = parseFloat( lp.getToken() );
							const m0 = parseFloat( lp.getToken() );
							const m1 = parseFloat( lp.getToken() );
							const m2 = parseFloat( lp.getToken() );
							const m3 = parseFloat( lp.getToken() );
							const m4 = parseFloat( lp.getToken() );
							const m5 = parseFloat( lp.getToken() );
							const m6 = parseFloat( lp.getToken() );
							const m7 = parseFloat( lp.getToken() );
							const m8 = parseFloat( lp.getToken() );
							const matrix = new Matrix4().set(
								m0, m1, m2, posX,
								m3, m4, m5, posY,
								m6, m7, m8, posZ,
								0, 0, 0, 1
							);
							let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' );
							if ( loader.fileMap[ fileName ] ) {
								// Found the subobject path in the preloaded file path map
								fileName = loader.fileMap[ fileName ];
							} else {
								// Standardized subfolders
								if ( fileName.startsWith( 's/' ) ) {
									fileName = 'parts/' + fileName;
								} else if ( fileName.startsWith( '48/' ) ) {
									fileName = 'p/' + fileName;
								}
							}
							subobjects.push( {
								material: material,
								colorCode: colorCode,
								matrix: matrix,
								fileName: fileName,
								inverted: bfcInverted,
								startingBuildingStep: startingBuildingStep
							} );
							startingBuildingStep = false;
							bfcInverted = false;
							break;
							// Line type 2: Line segment
						case '2':
							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							v0 = lp.getVector();
							v1 = lp.getVector();
							segment = {
								material: material,
								colorCode: colorCode,
								vertices: [ v0, v1 ],
							};
							lineSegments.push( segment );
							break;
							// Line type 5: Conditional Line segment
						case '5':
							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							v0 = lp.getVector();
							v1 = lp.getVector();
							c0 = lp.getVector();
							c1 = lp.getVector();
							segment = {
								material: material,
								colorCode: colorCode,
								vertices: [ v0, v1 ],
								controlPoints: [ c0, c1 ],
							};
							conditionalSegments.push( segment );
							break;
							// Line type 3: Triangle
						case '3':
							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							ccw = bfcCCW;
							doubleSided = ! bfcCertified || ! bfcCull;
							if ( ccw === true ) {
								v0 = lp.getVector();
								v1 = lp.getVector();
								v2 = lp.getVector();
							} else {
								v2 = lp.getVector();
								v1 = lp.getVector();
								v0 = lp.getVector();
							}
							faces.push( {
								material: material,
								colorCode: colorCode,
								faceNormal: null,
								vertices: [ v0, v1, v2 ],
								normals: [ null, null, null ],
							} );
							totalFaces ++;
							if ( doubleSided === true ) {
								faces.push( {
									material: material,
									colorCode: colorCode,
									faceNormal: null,
									vertices: [ v2, v1, v0 ],
									normals: [ null, null, null ],
								} );
								totalFaces ++;
							}
							break;
							// Line type 4: Quadrilateral
						case '4':
							colorCode = lp.getToken();
							material = getLocalMaterial( colorCode );
							ccw = bfcCCW;
							doubleSided = ! bfcCertified || ! bfcCull;
							if ( ccw === true ) {
								v0 = lp.getVector();
								v1 = lp.getVector();
								v2 = lp.getVector();
								v3 = lp.getVector();
							} else {
								v3 = lp.getVector();
								v2 = lp.getVector();
								v1 = lp.getVector();
								v0 = lp.getVector();
							}
							// specifically place the triangle diagonal in the v0 and v1 slots so we can
							// account for the doubling of vertices later when smoothing normals.
							faces.push( {
								material: material,
								colorCode: colorCode,
								faceNormal: null,
								vertices: [ v0, v1, v2, v3 ],
								normals: [ null, null, null, null ],
							} );
							totalFaces += 2;
							if ( doubleSided === true ) {
								faces.push( {
									material: material,
									colorCode: colorCode,
									faceNormal: null,
									vertices: [ v3, v2, v1, v0 ],
									normals: [ null, null, null, null ],
								} );
								totalFaces += 2;
							}
							break;
						default:
							throw new Error( 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.' );
					}
				}
			}catch(error){
				console.error(error);
			}
			if ( parsingEmbeddedFiles ) {
				this.setData( currentEmbeddedFileName, currentEmbeddedText );
			}
			return {
				faces,
				conditionalSegments,
				lineSegments,
				type,
				category,
				keywords,
				author,
				subobjects,
				totalFaces,
				startingBuildingStep,
				materials,
				fileName,
				group: null
			};
		}
		// returns an (optionally cloned) instance of the data
		getData( fileName, clone = true ) {
			const key = fileName.toLowerCase();
			const result = this._cache[ key ];
			if ( result === null || result instanceof Promise ) {
				return null;
			}
			if ( clone ) {
				return this.cloneResult( result );
			} else {
				return result;
			}
		}
		// kicks off a fetch and parse of the requested data if it hasn't already been loaded. Returns when
		// the data is ready to use and can be retrieved synchronously with "getData".
		async ensureDataLoaded( fileName ) {
			const key = fileName.toLowerCase();
			if ( ! ( key in this._cache ) ) {
				// replace the promise with a copy of the parsed data for immediate processing
				this._cache[ key ] = this.fetchData( fileName ).then( text => {
					const info = this.parse( text, fileName );
					this._cache[ key ] = info;
					return info;
				} );
			}
			await this._cache[ key ];
		}
		// sets the data in the cache from parsed data
		setData( fileName, text ) {
			const key = fileName.toLowerCase();
			this._cache[ key ] = this.parse( text, fileName );
		}
	}
	// returns the material for an associated color code. If the color code is 16 for a face or 24 for
	// an edge then the passthroughColorCode is used.
	function getMaterialFromCode( colorCode, parentColorCode, materialHierarchy, forEdge ) {
		const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE;
		if ( isPassthrough ) {
			colorCode = parentColorCode;
		}
		return materialHierarchy[ colorCode ] || null;
	}
	// Class used to parse and build LDraw parts as three.js objects and cache them if they're a "Part" type.
	class LDrawPartsGeometryCache {
		constructor( loader ) {
			this.loader = loader;
			this.parseCache = new LDrawParsedCache( loader );
			this._cache = {};
		}
		// Convert the given file information into a mesh by processing subobjects.
		async processIntoMesh( info ) {
			const loader = this.loader;
			const parseCache = this.parseCache;
			const faceMaterials = new Set();
			// Processes the part subobject information to load child parts and merge geometry onto part
			// piece object.
			const processInfoSubobjects = async ( info, subobject = null ) => {
				const subobjects = info.subobjects;
				const promises = [];
				// Trigger load of all subobjects. If a subobject isn't a primitive then load it as a separate
				// group which lets instruction steps apply correctly.
				for ( let i = 0, l = subobjects.length; i < l; i ++ ) {
					const subobject = subobjects[ i ];
					const promise = parseCache.ensureDataLoaded( subobject.fileName ).then( () => {
						const subobjectInfo = parseCache.getData( subobject.fileName, false );
						if ( ! isPrimitiveType( subobjectInfo.type ) ) {
							return this.loadModel( subobject.fileName ).catch( error => {
								console.warn( error );
								return null;
							} );
						}
						return processInfoSubobjects( parseCache.getData( subobject.fileName ), subobject );
					} );
					promises.push( promise );
				}
				const group = new Group();
				group.userData.category = info.category;
				group.userData.keywords = info.keywords;
				group.userData.author = info.author;
				group.userData.type = info.type;
				group.userData.fileName = info.fileName;
				info.group = group;
				const subobjectInfos = await Promise.all( promises );
				for ( let i = 0, l = subobjectInfos.length; i < l; i ++ ) {
					const subobject = info.subobjects[ i ];
					const subobjectInfo = subobjectInfos[ i ];
					if ( subobjectInfo === null ) {
						// the subobject failed to load
						continue;
					}
					// if the subobject was loaded as a separate group then apply the parent scopes materials
					if ( subobjectInfo.isGroup ) {
						const subobjectGroup = subobjectInfo;
						subobject.matrix.decompose( subobjectGroup.position, subobjectGroup.quaternion, subobjectGroup.scale );
						subobjectGroup.userData.startingBuildingStep = subobject.startingBuildingStep;
						subobjectGroup.name = subobject.fileName;
						loader.applyMaterialsToMesh( subobjectGroup, subobject.colorCode, info.materials );
						subobjectGroup.userData.colorCode = subobject.colorCode;
						group.add( subobjectGroup );
						continue;
					}
					// add the subobject group if it has children in case it has both children and primitives
					if ( subobjectInfo.group.children.length ) {
						group.add( subobjectInfo.group );
					}
					// transform the primitives into the local space of the parent piece and append them to
					// to the parent primitives list.
					const parentLineSegments = info.lineSegments;
					const parentConditionalSegments = info.conditionalSegments;
					const parentFaces = info.faces;
					const lineSegments = subobjectInfo.lineSegments;
					const conditionalSegments = subobjectInfo.conditionalSegments;
					const faces = subobjectInfo.faces;
					const matrix = subobject.matrix;
					const inverted = subobject.inverted;
					const matrixScaleInverted = matrix.determinant() < 0;
					const colorCode = subobject.colorCode;
					const lineColorCode = colorCode === MAIN_COLOUR_CODE ? MAIN_EDGE_COLOUR_CODE : colorCode;
					for ( let i = 0, l = lineSegments.length; i < l; i ++ ) {
						const ls = lineSegments[ i ];
						const vertices = ls.vertices;
						vertices[ 0 ].applyMatrix4( matrix );
						vertices[ 1 ].applyMatrix4( matrix );
						ls.colorCode = ls.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : ls.colorCode;
						ls.material = ls.material || getMaterialFromCode( ls.colorCode, ls.colorCode, info.materials, true );
						parentLineSegments.push( ls );
					}
					for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) {
						const os = conditionalSegments[ i ];
						const vertices = os.vertices;
						const controlPoints = os.controlPoints;
						vertices[ 0 ].applyMatrix4( matrix );
						vertices[ 1 ].applyMatrix4( matrix );
						controlPoints[ 0 ].applyMatrix4( matrix );
						controlPoints[ 1 ].applyMatrix4( matrix );
						os.colorCode = os.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : os.colorCode;
						os.material = os.material || getMaterialFromCode( os.colorCode, os.colorCode, info.materials, true );
						parentConditionalSegments.push( os );
					}
					for ( let i = 0, l = faces.length; i < l; i ++ ) {
						const tri = faces[ i ];
						const vertices = tri.vertices;
						for ( let i = 0, l = vertices.length; i < l; i ++ ) {
							vertices[ i ].applyMatrix4( matrix );
						}
						tri.colorCode = tri.colorCode === MAIN_COLOUR_CODE ? colorCode : tri.colorCode;
						tri.material = tri.material || getMaterialFromCode( tri.colorCode, colorCode, info.materials, false );
						faceMaterials.add( tri.colorCode );
						// If the scale of the object is negated then the triangle winding order
						// needs to be flipped.
						if ( matrixScaleInverted !== inverted ) {
							vertices.reverse();
						}
						parentFaces.push( tri );
					}
					info.totalFaces += subobjectInfo.totalFaces;
				}
				// Apply the parent subobjects pass through material code to this object. This is done several times due
				// to material scoping.
				if ( subobject ) {
					loader.applyMaterialsToMesh( group, subobject.colorCode, info.materials );
					group.userData.colorCode = subobject.colorCode;
				}
				return info;
			};
			// Track material use to see if we need to use the normal smooth slow path for hard edges.
			for ( let i = 0, l = info.faces; i < l; i ++ ) {
				faceMaterials.add( info.faces[ i ].colorCode );
			}
			await processInfoSubobjects( info );
			if ( loader.smoothNormals ) {
				const checkSubSegments = faceMaterials.size > 1;
				generateFaceNormals( info.faces );
				smoothNormals( info.faces, info.lineSegments, checkSubSegments );
			}
			// Add the primitive objects and metadata.
			const group = info.group;
			if ( info.faces.length > 0 ) {
				group.add( createObject( this.loader, info.faces, 3, false, info.totalFaces ) );
			}
			if ( info.lineSegments.length > 0 ) {
				group.add( createObject( this.loader, info.lineSegments, 2 ) );
			}
			if ( info.conditionalSegments.length > 0 ) {
				group.add( createObject( this.loader, info.conditionalSegments, 2, true ) );
			}
			return group;
		}
		hasCachedModel( fileName ) {
			return fileName !== null && fileName.toLowerCase() in this._cache;
		}
		async getCachedModel( fileName ) {
			if ( fileName !== null && this.hasCachedModel( fileName ) ) {
				const key = fileName.toLowerCase();
				const group = await this._cache[ key ];
				return group.clone();
			} else {
				return null;
			}
		}
		// Loads and parses the model with the given file name. Returns a cached copy if available.
		async loadModel( fileName ) {
			const parseCache = this.parseCache;
			const key = fileName.toLowerCase();
			if ( this.hasCachedModel( fileName ) ) {
				// Return cached model if available.
				return this.getCachedModel( fileName );
			} else {
				// Otherwise parse a new model.
				// Ensure the file data is loaded and pre parsed.
				await parseCache.ensureDataLoaded( fileName );
				const info = parseCache.getData( fileName );
				const promise = this.processIntoMesh( info );
				// Now that the file has loaded it's possible that another part parse has been waiting in parallel
				// so check the cache again to see if it's been added since the last async operation so we don't
				// do unnecessary work.
				if ( this.hasCachedModel( fileName ) ) {
					return this.getCachedModel( fileName );
				}
				// Cache object if it's a part so it can be reused later.
				if ( isPartType( info.type ) ) {
					this._cache[ key ] = promise;
				}
				// return a copy
				const group = await promise;
				return group.clone();
			}
		}
		// parses the given model text into a renderable object. Returns cached copy if available.
		async parseModel( text ) {
			const parseCache = this.parseCache;
			const info = parseCache.parse( text );
			if ( isPartType( info.type ) && this.hasCachedModel( info.fileName ) ) {
				return this.getCachedModel( info.fileName );
			}
			return this.processIntoMesh( info );
		}
	}
	function sortByMaterial( a, b ) {
		if ( a.colorCode === b.colorCode ) {
			return 0;
		}
		if ( a.colorCode < b.colorCode ) {
			return - 1;
		}
		return 1;
	}
	function createObject( loader, elements, elementSize, isConditionalSegments = false, totalElements = null ) {
		// Creates a LineSegments (elementSize = 2) or a Mesh (elementSize = 3 )
		// With per face / segment material, implemented with mesh groups and materials array
		// Sort the faces or line segments by color code to make later the mesh groups
		elements.sort( sortByMaterial );
		if ( totalElements === null ) {
			totalElements = elements.length;
		}
		const positions = new Float32Array( elementSize * totalElements * 3 );
		const normals = elementSize === 3 ? new Float32Array( elementSize * totalElements * 3 ) : null;
		const materials = [];
		const quadArray = new Array( 6 );
		const bufferGeometry = new BufferGeometry();
		let prevMaterial = null;
		let index0 = 0;
		let numGroupVerts = 0;
		let offset = 0;
		for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) {
			const elem = elements[ iElem ];
			let vertices = elem.vertices;
			if ( vertices.length === 4 ) {
				quadArray[ 0 ] = vertices[ 0 ];
				quadArray[ 1 ] = vertices[ 1 ];
				quadArray[ 2 ] = vertices[ 2 ];
				quadArray[ 3 ] = vertices[ 0 ];
				quadArray[ 4 ] = vertices[ 2 ];
				quadArray[ 5 ] = vertices[ 3 ];
				vertices = quadArray;
			}
			for ( let j = 0, l = vertices.length; j < l; j ++ ) {
				const v = vertices[ j ];
				const index = offset + j * 3;
				positions[ index + 0 ] = v.x;
				positions[ index + 1 ] = v.y;
				positions[ index + 2 ] = v.z;
			}
			// create the normals array if this is a set of faces
			if ( elementSize === 3 ) {
				if ( ! elem.faceNormal ) {
					const v0 = vertices[ 0 ];
					const v1 = vertices[ 1 ];
					const v2 = vertices[ 2 ];
					_tempVec0.subVectors( v1, v0 );
					_tempVec1.subVectors( v2, v1 );
					elem.faceNormal = new Vector3()
						.crossVectors( _tempVec0, _tempVec1 )
						.normalize();
				}
				let elemNormals = elem.normals;
				if ( elemNormals.length === 4 ) {
					quadArray[ 0 ] = elemNormals[ 0 ];
					quadArray[ 1 ] = elemNormals[ 1 ];
					quadArray[ 2 ] = elemNormals[ 2 ];
					quadArray[ 3 ] = elemNormals[ 0 ];
					quadArray[ 4 ] = elemNormals[ 2 ];
					quadArray[ 5 ] = elemNormals[ 3 ];
					elemNormals = quadArray;
				}
				for ( let j = 0, l = elemNormals.length; j < l; j ++ ) {
					// use face normal if a vertex normal is not provided
					let n = elem.faceNormal;
					if ( elemNormals[ j ] ) {
						n = elemNormals[ j ].norm;
					}
					const index = offset + j * 3;
					normals[ index + 0 ] = n.x;
					normals[ index + 1 ] = n.y;
					normals[ index + 2 ] = n.z;
				}
			}
			if ( prevMaterial !== elem.colorCode ) {
				if ( prevMaterial !== null ) {
					bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 );
				}
				const material = elem.material;
				if ( material !== null ) {
					if ( elementSize === 3 ) {
						materials.push( material );
					} else if ( elementSize === 2 ) {
						if ( isConditionalSegments ) {
							const edgeMaterial = loader.edgeMaterialCache.get( material );
							materials.push( loader.conditionalEdgeMaterialCache.get( edgeMaterial ) );
						} else {
							materials.push( loader.edgeMaterialCache.get( material ) );
						}
					}
				} else {
					// If a material has not been made available yet then keep the color code string in the material array
					// to save the spot for the material once a parent scopes materials are being applied to the object.
					materials.push( elem.colorCode );
				}
				prevMaterial = elem.colorCode;
				index0 = offset / 3;
				numGroupVerts = vertices.length;
			} else {
				numGroupVerts += vertices.length;
			}
			offset += 3 * vertices.length;
		}
		if ( numGroupVerts > 0 ) {
			bufferGeometry.addGroup( index0, Infinity, materials.length - 1 );
		}
		bufferGeometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
		if ( normals !== null ) {
			bufferGeometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
		}
		let object3d = null;
		if ( elementSize === 2 ) {
			if ( isConditionalSegments ) {
				object3d = new ConditionalLineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
			} else {
				object3d = new LineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
			}
		} else if ( elementSize === 3 ) {
			object3d = new Mesh( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials );
		}
		if ( isConditionalSegments ) {
			object3d.isConditionalLine = true;
			const controlArray0 = new Float32Array( elements.length * 3 * 2 );
			const controlArray1 = new Float32Array( elements.length * 3 * 2 );
			const directionArray = new Float32Array( elements.length * 3 * 2 );
			for ( let i = 0, l = elements.length; i < l; i ++ ) {
				const os = elements[ i ];
				const vertices = os.vertices;
				const controlPoints = os.controlPoints;
				const c0 = controlPoints[ 0 ];
				const c1 = controlPoints[ 1 ];
				const v0 = vertices[ 0 ];
				const v1 = vertices[ 1 ];
				const index = i * 3 * 2;
				controlArray0[ index + 0 ] = c0.x;
				controlArray0[ index + 1 ] = c0.y;
				controlArray0[ index + 2 ] = c0.z;
				controlArray0[ index + 3 ] = c0.x;
				controlArray0[ index + 4 ] = c0.y;
				controlArray0[ index + 5 ] = c0.z;
				controlArray1[ index + 0 ] = c1.x;
				controlArray1[ index + 1 ] = c1.y;
				controlArray1[ index + 2 ] = c1.z;
				controlArray1[ index + 3 ] = c1.x;
				controlArray1[ index + 4 ] = c1.y;
				controlArray1[ index + 5 ] = c1.z;
				directionArray[ index + 0 ] = v1.x - v0.x;
				directionArray[ index + 1 ] = v1.y - v0.y;
				directionArray[ index + 2 ] = v1.z - v0.z;
				directionArray[ index + 3 ] = v1.x - v0.x;
				directionArray[ index + 4 ] = v1.y - v0.y;
				directionArray[ index + 5 ] = v1.z - v0.z;
			}
			bufferGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) );
			bufferGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) );
			bufferGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) );
		}
		return object3d;
	}
	//
	class LDrawLoader extends Loader {
		constructor( manager ) {
			super( manager );
			// Array of THREE.Material
			this.materials = [];
			this.materialLibrary = {};
			this.edgeMaterialCache = new WeakMap();
			this.conditionalEdgeMaterialCache = new WeakMap();
			// This also allows to handle the embedded text files ("0 FILE" lines)
			this.partsCache = new LDrawPartsGeometryCache( this );
			// This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error.
			this.fileMap = {};
			// Initializes the materials library with default materials
			this.setMaterials( [] );
			// If this flag is set to true the vertex normals will be smoothed.
			this.smoothNormals = true;
			// The path to load parts from the LDraw parts library from.
			this.partsLibraryPath = '';
			// Material assigned to not available colors for meshes and edges
			this.missingColorMaterial = new MeshStandardMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xFF00FF, roughness: 0.3, metalness: 0 } );
			this.missingEdgeColorMaterial = new LineBasicMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, color: 0xFF00FF } );
			this.missingConditionalEdgeColorMaterial = new LDrawConditionalLineMaterial( { name: Loader.DEFAULT_MATERIAL_NAME, fog: true, color: 0xFF00FF } );
			this.edgeMaterialCache.set( this.missingColorMaterial, this.missingEdgeColorMaterial );
			this.conditionalEdgeMaterialCache.set( this.missingEdgeColorMaterial, this.missingConditionalEdgeColorMaterial );
		}
		setPartsLibraryPath( path ) {
			this.partsLibraryPath = path;
			return this;
		}
		async preloadMaterials( url ) {
			const fileLoader = new FileLoader( this.manager );
			fileLoader.setPath( this.path );
			fileLoader.setRequestHeader( this.requestHeader );
			fileLoader.setWithCredentials( this.withCredentials );
			const text = await fileLoader.loadAsync( url );
			const colorLineRegex = /^0 !COLOUR/;
			const lines = text.split( /[\n\r]/g );
			const materials = [];
			for ( let i = 0, l = lines.length; i < l; i ++ ) {
				const line = lines[ i ];
				if ( colorLineRegex.test( line ) ) {
					const directive = line.replace( colorLineRegex, '' );
					const material = this.parseColorMetaDirective( new LineParser( directive ) );
					materials.push( material );
				}
			}
			this.setMaterials( materials );
		}
		load( url, onLoad, onProgress, onError ) {
			const fileLoader = new FileLoader( this.manager );
			fileLoader.setPath( this.path );
			fileLoader.setRequestHeader( this.requestHeader );
			fileLoader.setWithCredentials( this.withCredentials );
			fileLoader.load( url, text => {
				this.partsCache
					.parseModel( text, this.materialLibrary )
					.then( group => {
						this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true );
						this.computeBuildingSteps( group );
						group.userData.fileName = url;
						onLoad( group );
					} )
					.catch( onError );
			}, onProgress, onError );
		}
		parse( text, onLoad ) {
			this.partsCache
				.parseModel( text, this.materialLibrary )
				.then( group => {
					this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true );
					this.computeBuildingSteps( group );
					group.userData.fileName = '';
					onLoad( group );
				} );
		}
		setMaterials( materials ) {
			this.materialLibrary = {};
			this.materials = [];
			for ( let i = 0, l = materials.length; i < l; i ++ ) {
				this.addMaterial( materials[ i ] );
			}
			// Add default main triangle and line edge materials (used in pieces that can be colored with a main color)
			this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ) );
			this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) ) );
			return this;
		}
		setFileMap( fileMap ) {
			this.fileMap = fileMap;
			return this;
		}
		addMaterial( material ) {
			// Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array
			const matLib = this.materialLibrary;
			if ( ! matLib[ material.userData.code ] ) {
				this.materials.push( material );
				matLib[ material.userData.code ] = material;
			}
			return this;
		}
		getMaterial( colorCode ) {
			if ( colorCode.startsWith( '0x2' ) ) {
				// Special 'direct' material value (RGB color)
				const color = colorCode.substring( 3 );
				return this.parseColorMetaDirective( new LineParser( 'Direct_Color_' + color + ' CODE -1 VALUE #' + color + ' EDGE #' + color + '' ) );
			}
			return this.materialLibrary[ colorCode ] || null;
		}
		// Applies the appropriate materials to a prebuilt hierarchy of geometry. Assumes that color codes are present
		// in the material array if they need to be filled in.
		applyMaterialsToMesh( group, parentColorCode, materialHierarchy, finalMaterialPass = false ) {
			// find any missing materials as indicated by a color code string and replace it with a material from the current material lib
			const loader = this;
			const parentIsPassthrough = parentColorCode === MAIN_COLOUR_CODE;
			group.traverse( c => {
				if ( c.isMesh || c.isLineSegments ) {
					if ( Array.isArray( c.material ) ) {
						for ( let i = 0, l = c.material.length; i < l; i ++ ) {
							if ( ! c.material[ i ].isMaterial ) {
								c.material[ i ] = getMaterial( c, c.material[ i ] );
							}
						}
					} else if ( ! c.material.isMaterial ) {
						c.material = getMaterial( c, c.material );
					}
				}
			} );
			// Returns the appropriate material for the object (line or face) given color code. If the code is "pass through"
			// (24 for lines, 16 for edges) then the pass through color code is used. If that is also pass through then it's
			// simply returned for the subsequent material application.
			function getMaterial( c, colorCode ) {
				// if our parent is a passthrough color code and we don't have the current material color available then
				// return early.
				if ( parentIsPassthrough && ! ( colorCode in materialHierarchy ) && ! finalMaterialPass ) {
					return colorCode;
				}
				const forEdge = c.isLineSegments || c.isConditionalLine;
				const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE;
				if ( isPassthrough ) {
					colorCode = parentColorCode;
				}
				let material = null;
				if ( colorCode in materialHierarchy ) {
					material = materialHierarchy[ colorCode ];
				} else if ( finalMaterialPass ) {
					// see if we can get the final material from from the "getMaterial" function which will attempt to
					// parse the "direct" colors
					material = loader.getMaterial( colorCode );
					if ( material === null ) {
						// otherwise throw a warning if this is final opportunity to set the material
						console.warn( `LDrawLoader: Material properties for code ${ colorCode } not available.` );
						// And return the 'missing color' material
						material = loader.missingColorMaterial;
					}
				} else {
					return colorCode;
				}
				if ( c.isLineSegments ) {
					material = loader.edgeMaterialCache.get( material );
					if ( c.isConditionalLine ) {
						material = loader.conditionalEdgeMaterialCache.get( material );
					}
				}
				return material;
			}
		}
		getMainMaterial() {
			return this.getMaterial( MAIN_COLOUR_CODE );
		}
		getMainEdgeMaterial() {
			const mat = this.getMaterial( MAIN_EDGE_COLOUR_CODE );
			return mat ? this.edgeMaterialCache.get( mat ) : null;
		}
		parseColorMetaDirective( lineParser ) {
			// Parses a color definition and returns a THREE.Material
			let code = null;
			// Triangle and line colors
			let fillColor = '#FF00FF';
			let edgeColor = '#FF00FF';
			// Transparency
			let alpha = 1;
			let isTransparent = false;
			// Self-illumination:
			let luminance = 0;
			let finishType = FINISH_TYPE_DEFAULT;
			let edgeMaterial = null;
			const name = lineParser.getToken();
			if ( ! name ) {
				throw new Error( 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.' );
			}
			// Parse tag tokens and their parameters
			let token = null;
			while ( true ) {
				token = lineParser.getToken();
				if ( ! token ) {
					break;
				}
				if ( ! parseLuminance( token ) ) {
					switch ( token.toUpperCase() ) {
						case 'CODE':
							code = lineParser.getToken();
							break;
						case 'VALUE':
							fillColor = lineParser.getToken();
							if ( fillColor.startsWith( '0x' ) ) {
								fillColor = '#' + fillColor.substring( 2 );
							} else if ( ! fillColor.startsWith( '#' ) ) {
								throw new Error( 'LDrawLoader: Invalid color while parsing material' + lineParser.getLineNumberString() + '.' );
							}
							break;
						case 'EDGE':
							edgeColor = lineParser.getToken();
							if ( edgeColor.startsWith( '0x' ) ) {
								edgeColor = '#' + edgeColor.substring( 2 );
							} else if ( ! edgeColor.startsWith( '#' ) ) {
								// Try to see if edge color is a color code
								edgeMaterial = this.getMaterial( edgeColor );
								if ( ! edgeMaterial ) {
									throw new Error( 'LDrawLoader: Invalid edge color while parsing material' + lineParser.getLineNumberString() + '.' );
								}
								// Get the edge material for this triangle material
								edgeMaterial = this.edgeMaterialCache.get( edgeMaterial );
							}
							break;
						case 'ALPHA':
							alpha = parseInt( lineParser.getToken() );
							if ( isNaN( alpha ) ) {
								throw new Error( 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.' );
							}
							alpha = Math.max( 0, Math.min( 1, alpha / 255 ) );
							if ( alpha < 1 ) {
								isTransparent = true;
							}
							break;
						case 'LUMINANCE':
							if ( ! parseLuminance( lineParser.getToken() ) ) {
								throw new Error( 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.' );
							}
							break;
						case 'CHROME':
							finishType = FINISH_TYPE_CHROME;
							break;
						case 'PEARLESCENT':
							finishType = FINISH_TYPE_PEARLESCENT;
							break;
						case 'RUBBER':
							finishType = FINISH_TYPE_RUBBER;
							break;
						case 'MATTE_METALLIC':
							finishType = FINISH_TYPE_MATTE_METALLIC;
							break;
						case 'METAL':
							finishType = FINISH_TYPE_METAL;
							break;
						case 'MATERIAL':
							// Not implemented
							lineParser.setToEnd();
							break;
						default:
							throw new Error( 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.' );
					}
				}
			}
			let material = null;
			switch ( finishType ) {
				case FINISH_TYPE_DEFAULT:
					material = new MeshStandardMaterial( { roughness: 0.3, metalness: 0 } );
					break;
				case FINISH_TYPE_PEARLESCENT:
					// Try to imitate pearlescency by making the surface glossy
					material = new MeshStandardMaterial( { roughness: 0.3, metalness: 0.25 } );
					break;
				case FINISH_TYPE_CHROME:
					// Mirror finish surface
					material = new MeshStandardMaterial( { roughness: 0, metalness: 1 } );
					break;
				case FINISH_TYPE_RUBBER:
					// Rubber finish
					material = new MeshStandardMaterial( { roughness: 0.9, metalness: 0 } );
					break;
				case FINISH_TYPE_MATTE_METALLIC:
					// Brushed metal finish
					material = new MeshStandardMaterial( { roughness: 0.8, metalness: 0.4 } );
					break;
				case FINISH_TYPE_METAL:
					// Average metal finish
					material = new MeshStandardMaterial( { roughness: 0.2, metalness: 0.85 } );
					break;
				default:
					// Should not happen
					break;
			}
			material.color.setStyle( fillColor, COLOR_SPACE_LDRAW );
			material.transparent = isTransparent;
			material.premultipliedAlpha = true;
			material.opacity = alpha;
			material.depthWrite = ! isTransparent;
			material.polygonOffset = true;
			material.polygonOffsetFactor = 1;
			if ( luminance !== 0 ) {
				material.emissive.setStyle( fillColor, COLOR_SPACE_LDRAW ).multiplyScalar( luminance );
			}
			if ( ! edgeMaterial ) {
				// This is the material used for edges
				edgeMaterial = new LineBasicMaterial( {
					color: new Color().setStyle( edgeColor, COLOR_SPACE_LDRAW ),
					transparent: isTransparent,
					opacity: alpha,
					depthWrite: ! isTransparent
				} );
				edgeMaterial.color;
				edgeMaterial.userData.code = code;
				edgeMaterial.name = name + ' - Edge';
				// This is the material used for conditional edges
				const conditionalEdgeMaterial = new LDrawConditionalLineMaterial( {
					fog: true,
					transparent: isTransparent,
					depthWrite: ! isTransparent,
					color: new Color().setStyle( edgeColor, COLOR_SPACE_LDRAW ),
					opacity: alpha,
				} );
				conditionalEdgeMaterial.userData.code = code;
				conditionalEdgeMaterial.name = name + ' - Conditional Edge';
				this.conditionalEdgeMaterialCache.set( edgeMaterial, conditionalEdgeMaterial );
			}
			material.userData.code = code;
			material.name = name;
			this.edgeMaterialCache.set( material, edgeMaterial );
			this.addMaterial( material );
			return material;
			function parseLuminance( token ) {
				// Returns success
				let lum;
				if ( token.startsWith( 'LUMINANCE' ) ) {
					lum = parseInt( token.substring( 9 ) );
				} else {
					lum = parseInt( token );
				}
				if ( isNaN( lum ) ) {
					return false;
				}
				luminance = Math.max( 0, Math.min( 1, lum / 255 ) );
				return true;
			}
		}
		computeBuildingSteps( model ) {
			// Sets userdata.buildingStep number in Group objects and userData.numBuildingSteps number in the root Group object.
			let stepNumber = 0;
			model.traverse( c => {
				if ( c.isGroup ) {
					if ( c.userData.startingBuildingStep ) {
						stepNumber ++;
					}
					c.userData.buildingStep = stepNumber;
				}
			} );
			model.userData.numBuildingSteps = stepNumber + 1;
		}
	}
	//export { LDrawLoader };
	class Reflector extends Mesh {
		constructor( geometry, options = {} ) {
			super( geometry );
			this.isReflector = true;
			this.type = 'Reflector';
			this.camera = new PerspectiveCamera();
			const scope = this;
			const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0x7F7F7F );
			const textureWidth = options.textureWidth || 512;
			const textureHeight = options.textureHeight || 512;
			const clipBias = options.clipBias || 0;
			const shader = options.shader || Reflector.ReflectorShader;
			const multisample = ( options.multisample !== undefined ) ? options.multisample : 4;
			//
			const reflectorPlane = new Plane();
			const normal = new Vector3();
			const reflectorWorldPosition = new Vector3();
			const cameraWorldPosition = new Vector3();
			const rotationMatrix = new Matrix4();
			const lookAtPosition = new Vector3( 0, 0, - 1 );
			const clipPlane = new Vector4();
			const view = new Vector3();
			const target = new Vector3();
			const q = new Vector4();
			const textureMatrix = new Matrix4();
			const virtualCamera = this.camera;
			const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight, { samples: multisample, type: HalfFloatType } );
			const material = new ShaderMaterial( {
				name: ( shader.name !== undefined ) ? shader.name : 'unspecified',
				uniforms: UniformsUtils.clone( shader.uniforms ),
				fragmentShader: shader.fragmentShader,
				vertexShader: shader.vertexShader
			} );
			material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;
			material.uniforms[ 'color' ].value = color;
			material.uniforms[ 'textureMatrix' ].value = textureMatrix;
			this.material = material;
			this.onBeforeRender = function ( renderer, scene, camera ) {
				reflectorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
				cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
				rotationMatrix.extractRotation( scope.matrixWorld );
				normal.set( 0, 0, 1 );
				normal.applyMatrix4( rotationMatrix );
				view.subVectors( reflectorWorldPosition, cameraWorldPosition );
				// Avoid rendering when reflector is facing away
				if ( view.dot( normal ) > 0 ) return;
				view.reflect( normal ).negate();
				view.add( reflectorWorldPosition );
				rotationMatrix.extractRotation( camera.matrixWorld );
				lookAtPosition.set( 0, 0, - 1 );
				lookAtPosition.applyMatrix4( rotationMatrix );
				lookAtPosition.add( cameraWorldPosition );
				target.subVectors( reflectorWorldPosition, lookAtPosition );
				target.reflect( normal ).negate();
				target.add( reflectorWorldPosition );
				virtualCamera.position.copy( view );
				virtualCamera.up.set( 0, 1, 0 );
				virtualCamera.up.applyMatrix4( rotationMatrix );
				virtualCamera.up.reflect( normal );
				virtualCamera.lookAt( target );
				virtualCamera.far = camera.far; // Used in WebGLBackground
				virtualCamera.updateMatrixWorld();
				virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
				// Update the texture matrix
				textureMatrix.set(
					0.5, 0.0, 0.0, 0.5,
					0.0, 0.5, 0.0, 0.5,
					0.0, 0.0, 0.5, 0.5,
					0.0, 0.0, 0.0, 1.0
				);
				textureMatrix.multiply( virtualCamera.projectionMatrix );
				textureMatrix.multiply( virtualCamera.matrixWorldInverse );
				textureMatrix.multiply( scope.matrixWorld );
				// Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
				// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
				reflectorPlane.setFromNormalAndCoplanarPoint( normal, reflectorWorldPosition );
				reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
				clipPlane.set( reflectorPlane.normal.x, reflectorPlane.normal.y, reflectorPlane.normal.z, reflectorPlane.constant );
				const projectionMatrix = virtualCamera.projectionMatrix;
				q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
				q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
				q.z = - 1.0;
				q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
				// Calculate the scaled plane vector
				clipPlane.multiplyScalar( 2.0 / clipPlane.dot( q ) );
				// Replacing the third row of the projection matrix
				projectionMatrix.elements[ 2 ] = clipPlane.x;
				projectionMatrix.elements[ 6 ] = clipPlane.y;
				projectionMatrix.elements[ 10 ] = clipPlane.z + 1.0 - clipBias;
				projectionMatrix.elements[ 14 ] = clipPlane.w;
				// Render
				scope.visible = false;
				const currentRenderTarget = renderer.getRenderTarget();
				const currentXrEnabled = renderer.xr.enabled;
				const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
				renderer.xr.enabled = false; // Avoid camera modification
				renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows
				renderer.setRenderTarget( renderTarget );
				renderer.state.buffers.depth.setMask( true ); // make sure the depth buffer is writable so it can be properly cleared, see #18897
				if ( renderer.autoClear === false ) renderer.clear();
				renderer.render( scene, virtualCamera );
				renderer.xr.enabled = currentXrEnabled;
				renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
				renderer.setRenderTarget( currentRenderTarget );
				// Restore viewport
				const viewport = camera.viewport;
				if ( viewport !== undefined ) {
					renderer.state.viewport( viewport );
				}
				scope.visible = true;
			};
			this.getRenderTarget = function () {
				return renderTarget;
			};
			this.dispose = function () {
				renderTarget.dispose();
				scope.material.dispose();
			};
		}
	}
	Reflector.ReflectorShader = {
		name: 'ReflectorShader',
		uniforms: {
			'color': {
				value: null
			},
			'tDiffuse': {
				value: null
			},
			'textureMatrix': {
				value: null
			}
		},
		vertexShader: /* glsl */`
			uniform mat4 textureMatrix;
			varying vec4 vUv;
			#include <common>
			#include <logdepthbuf_pars_vertex>
			void main() {
				vUv = textureMatrix * vec4( position, 1.0 );
				gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
				#include <logdepthbuf_vertex>
			}`,
		fragmentShader: /* glsl */`
			uniform vec3 color;
			uniform sampler2D tDiffuse;
			varying vec4 vUv;
			#include <logdepthbuf_pars_fragment>
			float blendOverlay( float base, float blend ) {
				return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );
			}
			vec3 blendOverlay( vec3 base, vec3 blend ) {
				return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );
			}
			void main() {
				#include <logdepthbuf_fragment>
				vec4 base = texture2DProj( tDiffuse, vUv );
				gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );
				#include <tonemapping_fragment>
				#include <colorspace_fragment>
			}`
	};
	//export { Reflector };
	function computeMikkTSpaceTangents( geometry, MikkTSpace, negateSign = true ) {
		if ( ! MikkTSpace || ! MikkTSpace.isReady ) {
			throw new Error( 'BufferGeometryUtils: Initialized MikkTSpace library required.' );
		}
		if ( ! geometry.hasAttribute( 'position' ) || ! geometry.hasAttribute( 'normal' ) || ! geometry.hasAttribute( 'uv' ) ) {
			throw new Error( 'BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.' );
		}
		function getAttributeArray( attribute ) {
			if ( attribute.normalized || attribute.isInterleavedBufferAttribute ) {
				const dstArray = new Float32Array( attribute.count * attribute.itemSize );
				for ( let i = 0, j = 0; i < attribute.count; i ++ ) {
					dstArray[ j ++ ] = attribute.getX( i );
					dstArray[ j ++ ] = attribute.getY( i );
					if ( attribute.itemSize > 2 ) {
						dstArray[ j ++ ] = attribute.getZ( i );
					}
				}
				return dstArray;
			}
			if ( attribute.array instanceof Float32Array ) {
				return attribute.array;
			}
			return new Float32Array( attribute.array );
		}
		// MikkTSpace algorithm requires non-indexed input.
		const _geometry = geometry.index ? geometry.toNonIndexed() : geometry;
		// Compute vertex tangents.
		const tangents = MikkTSpace.generateTangents(
			getAttributeArray( _geometry.attributes.position ),
			getAttributeArray( _geometry.attributes.normal ),
			getAttributeArray( _geometry.attributes.uv )
		);
		// Texture coordinate convention of glTF differs from the apparent
		// default of the MikkTSpace library; .w component must be flipped.
		if ( negateSign ) {
			for ( let i = 3; i < tangents.length; i += 4 ) {
				tangents[ i ] *= - 1;
			}
		}
		//
		_geometry.setAttribute( 'tangent', new BufferAttribute( tangents, 4 ) );
		if ( geometry !== _geometry ) {
			geometry.copy( _geometry );
		}
		return geometry;
	}
	/**
	 * @param  {Array<BufferGeometry>} geometries
	 * @param  {Boolean} useGroups
	 * @return {BufferGeometry}
	 */
	function mergeGeometries( geometries, useGroups = false ) {
		const isIndexed = geometries[ 0 ].index !== null;
		const attributesUsed = new Set( Object.keys( geometries[ 0 ].attributes ) );
		const morphAttributesUsed = new Set( Object.keys( geometries[ 0 ].morphAttributes ) );
		const attributes = {};
		const morphAttributes = {};
		const morphTargetsRelative = geometries[ 0 ].morphTargetsRelative;
		const mergedGeometry = new BufferGeometry();
		let offset = 0;
		for ( let i = 0; i < geometries.length; ++ i ) {
			const geometry = geometries[ i ];
			let attributesCount = 0;
			// ensure that all geometries are indexed, or none
			if ( isIndexed !== ( geometry.index !== null ) ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.' );
				return null;
			}
			// gather attributes, exit early if they're different
			for ( const name in geometry.attributes ) {
				if ( ! attributesUsed.has( name ) ) {
					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.' );
					return null;
				}
				if ( attributes[ name ] === undefined ) attributes[ name ] = [];
				attributes[ name ].push( geometry.attributes[ name ] );
				attributesCount ++;
			}
			// ensure geometries have the same number of attributes
			if ( attributesCount !== attributesUsed.size ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. Make sure all geometries have the same number of attributes.' );
				return null;
			}
			// gather morph attributes, exit early if they're different
			if ( morphTargetsRelative !== geometry.morphTargetsRelative ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. .morphTargetsRelative must be consistent throughout all geometries.' );
				return null;
			}
			for ( const name in geometry.morphAttributes ) {
				if ( ! morphAttributesUsed.has( name ) ) {
					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '.  .morphAttributes must be consistent throughout all geometries.' );
					return null;
				}
				if ( morphAttributes[ name ] === undefined ) morphAttributes[ name ] = [];
				morphAttributes[ name ].push( geometry.morphAttributes[ name ] );
			}
			if ( useGroups ) {
				let count;
				if ( isIndexed ) {
					count = geometry.index.count;
				} else if ( geometry.attributes.position !== undefined ) {
					count = geometry.attributes.position.count;
				} else {
					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. The geometry must have either an index or a position attribute' );
					return null;
				}
				mergedGeometry.addGroup( offset, count, i );
				offset += count;
			}
		}
		// merge indices
		if ( isIndexed ) {
			let indexOffset = 0;
			const mergedIndex = [];
			for ( let i = 0; i < geometries.length; ++ i ) {
				const index = geometries[ i ].index;
				for ( let j = 0; j < index.count; ++ j ) {
					mergedIndex.push( index.getX( j ) + indexOffset );
				}
				indexOffset += geometries[ i ].attributes.position.count;
			}
			mergedGeometry.setIndex( mergedIndex );
		}
		// merge attributes
		for ( const name in attributes ) {
			const mergedAttribute = mergeAttributes( attributes[ name ] );
			if ( ! mergedAttribute ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' attribute.' );
				return null;
			}
			mergedGeometry.setAttribute( name, mergedAttribute );
		}
		// merge morph attributes
		for ( const name in morphAttributes ) {
			const numMorphTargets = morphAttributes[ name ][ 0 ].length;
			if ( numMorphTargets === 0 ) break;
			mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {};
			mergedGeometry.morphAttributes[ name ] = [];
			for ( let i = 0; i < numMorphTargets; ++ i ) {
				const morphAttributesToMerge = [];
				for ( let j = 0; j < morphAttributes[ name ].length; ++ j ) {
					morphAttributesToMerge.push( morphAttributes[ name ][ j ][ i ] );
				}
				const mergedMorphAttribute = mergeAttributes( morphAttributesToMerge );
				if ( ! mergedMorphAttribute ) {
					console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' morphAttribute.' );
					return null;
				}
				mergedGeometry.morphAttributes[ name ].push( mergedMorphAttribute );
			}
		}
		return mergedGeometry;
	}
	/**
	 * @param {Array<BufferAttribute>} attributes
	 * @return {BufferAttribute}
	 */
	function mergeAttributes( attributes ) {
		let TypedArray;
		let itemSize;
		let normalized;
		let gpuType = - 1;
		let arrayLength = 0;
		for ( let i = 0; i < attributes.length; ++ i ) {
			const attribute = attributes[ i ];
			if ( TypedArray === undefined ) TypedArray = attribute.array.constructor;
			if ( TypedArray !== attribute.array.constructor ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes.' );
				return null;
			}
			if ( itemSize === undefined ) itemSize = attribute.itemSize;
			if ( itemSize !== attribute.itemSize ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes.' );
				return null;
			}
			if ( normalized === undefined ) normalized = attribute.normalized;
			if ( normalized !== attribute.normalized ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes.' );
				return null;
			}
			if ( gpuType === - 1 ) gpuType = attribute.gpuType;
			if ( gpuType !== attribute.gpuType ) {
				console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes.' );
				return null;
			}
			arrayLength += attribute.count * itemSize;
		}
		const array = new TypedArray( arrayLength );
		const result = new BufferAttribute( array, itemSize, normalized );
		let offset = 0;
		for ( let i = 0; i < attributes.length; ++ i ) {
			const attribute = attributes[ i ];
			if ( attribute.isInterleavedBufferAttribute ) {
				const tupleOffset = offset / itemSize;
				for ( let j = 0, l = attribute.count; j < l; j ++ ) {
					for ( let c = 0; c < itemSize; c ++ ) {
						const value = attribute.getComponent( j, c );
						result.setComponent( j + tupleOffset, c, value );
					}
				}
			} else {
				array.set( attribute.array, offset );
			}
			offset += attribute.count * itemSize;
		}
		if ( gpuType !== undefined ) {
			result.gpuType = gpuType;
		}
		return result;
	}
	/**
	 * @param {BufferAttribute}
	 * @return {BufferAttribute}
	 */
	export function deepCloneAttribute( attribute ) {
		if ( attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute ) {
			return deinterleaveAttribute( attribute );
		}
		if ( attribute.isInstancedBufferAttribute ) {
			return new InstancedBufferAttribute().copy( attribute );
		}
		return new BufferAttribute().copy( attribute );
	}
	/**
	 * @param {Array<BufferAttribute>} attributes
	 * @return {Array<InterleavedBufferAttribute>}
	 */
	function interleaveAttributes( attributes ) {
		// Interleaves the provided attributes into an InterleavedBuffer and returns
		// a set of InterleavedBufferAttributes for each attribute
		let TypedArray;
		let arrayLength = 0;
		let stride = 0;
		// calculate the length and type of the interleavedBuffer
		for ( let i = 0, l = attributes.length; i < l; ++ i ) {
			const attribute = attributes[ i ];
			if ( TypedArray === undefined ) TypedArray = attribute.array.constructor;
			if ( TypedArray !== attribute.array.constructor ) {
				console.error( 'AttributeBuffers of different types cannot be interleaved' );
				return null;
			}
			arrayLength += attribute.array.length;
			stride += attribute.itemSize;
		}
		// Create the set of buffer attributes
		const interleavedBuffer = new InterleavedBuffer( new TypedArray( arrayLength ), stride );
		let offset = 0;
		const res = [];
		const getters = [ 'getX', 'getY', 'getZ', 'getW' ];
		const setters = [ 'setX', 'setY', 'setZ', 'setW' ];
		for ( let j = 0, l = attributes.length; j < l; j ++ ) {
			const attribute = attributes[ j ];
			const itemSize = attribute.itemSize;
			const count = attribute.count;
			const iba = new InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, attribute.normalized );
			res.push( iba );
			offset += itemSize;
			// Move the data for each attribute into the new interleavedBuffer
			// at the appropriate offset
			for ( let c = 0; c < count; c ++ ) {
				for ( let k = 0; k < itemSize; k ++ ) {
					iba[ setters[ k ] ]( c, attribute[ getters[ k ] ]( c ) );
				}
			}
		}
		return res;
	}
	// returns a new, non-interleaved version of the provided attribute
	export function deinterleaveAttribute( attribute ) {
		const cons = attribute.data.array.constructor;
		const count = attribute.count;
		const itemSize = attribute.itemSize;
		const normalized = attribute.normalized;
		const array = new cons( count * itemSize );
		let newAttribute;
		if ( attribute.isInstancedInterleavedBufferAttribute ) {
			newAttribute = new InstancedBufferAttribute( array, itemSize, normalized, attribute.meshPerAttribute );
		} else {
			newAttribute = new BufferAttribute( array, itemSize, normalized );
		}
		for ( let i = 0; i < count; i ++ ) {
			newAttribute.setX( i, attribute.getX( i ) );
			if ( itemSize >= 2 ) {
				newAttribute.setY( i, attribute.getY( i ) );
			}
			if ( itemSize >= 3 ) {
				newAttribute.setZ( i, attribute.getZ( i ) );
			}
			if ( itemSize >= 4 ) {
				newAttribute.setW( i, attribute.getW( i ) );
			}
		}
		return newAttribute;
	}
	// deinterleaves all attributes on the geometry
	export function deinterleaveGeometry( geometry ) {
		const attributes = geometry.attributes;
		const morphTargets = geometry.morphTargets;
		const attrMap = new Map();
		for ( const key in attributes ) {
			const attr = attributes[ key ];
			if ( attr.isInterleavedBufferAttribute ) {
				if ( ! attrMap.has( attr ) ) {
					attrMap.set( attr, deinterleaveAttribute( attr ) );
				}
				attributes[ key ] = attrMap.get( attr );
			}
		}
		for ( const key in morphTargets ) {
			const attr = morphTargets[ key ];
			if ( attr.isInterleavedBufferAttribute ) {
				if ( ! attrMap.has( attr ) ) {
					attrMap.set( attr, deinterleaveAttribute( attr ) );
				}
				morphTargets[ key ] = attrMap.get( attr );
			}
		}
	}
	/**
	 * @param {BufferGeometry} geometry
	 * @return {number}
	 */
	function estimateBytesUsed( geometry ) {
		// Return the estimated memory used by this geometry in bytes
		// Calculate using itemSize, count, and BYTES_PER_ELEMENT to account
		// for InterleavedBufferAttributes.
		let mem = 0;
		for ( const name in geometry.attributes ) {
			const attr = geometry.getAttribute( name );
			mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT;
		}
		const indices = geometry.getIndex();
		mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0;
		return mem;
	}
	/**
	 * @param {BufferGeometry} geometry
	 * @param {number} tolerance
	 * @return {BufferGeometry}
	 */
	function mergeVertices( geometry, tolerance = 1e-4 ) {
		tolerance = Math.max( tolerance, Number.EPSILON );
		// Generate an index buffer if the geometry doesn't have one, or optimize it
		// if it's already available.
		const hashToIndex = {};
		const indices = geometry.getIndex();
		const positions = geometry.getAttribute( 'position' );
		const vertexCount = indices ? indices.count : positions.count;
		// next value for triangle indices
		let nextIndex = 0;
		// attributes and new attribute arrays
		const attributeNames = Object.keys( geometry.attributes );
		const tmpAttributes = {};
		const tmpMorphAttributes = {};
		const newIndices = [];
		const getters = [ 'getX', 'getY', 'getZ', 'getW' ];
		const setters = [ 'setX', 'setY', 'setZ', 'setW' ];
		// Initialize the arrays, allocating space conservatively. Extra
		// space will be trimmed in the last step.
		for ( let i = 0, l = attributeNames.length; i < l; i ++ ) {
			const name = attributeNames[ i ];
			const attr = geometry.attributes[ name ];
			tmpAttributes[ name ] = new BufferAttribute(
				new attr.array.constructor( attr.count * attr.itemSize ),
				attr.itemSize,
				attr.normalized
			);
			const morphAttr = geometry.morphAttributes[ name ];
			if ( morphAttr ) {
				tmpMorphAttributes[ name ] = new BufferAttribute(
					new morphAttr.array.constructor( morphAttr.count * morphAttr.itemSize ),
					morphAttr.itemSize,
					morphAttr.normalized
				);
			}
		}
		// convert the error tolerance to an amount of decimal places to truncate to
		const halfTolerance = tolerance * 0.5;
		const exponent = Math.log10( 1 / tolerance );
		const hashMultiplier = Math.pow( 10, exponent );
		const hashAdditive = halfTolerance * hashMultiplier;
		for ( let i = 0; i < vertexCount; i ++ ) {
			const index = indices ? indices.getX( i ) : i;
			// Generate a hash for the vertex attributes at the current index 'i'
			let hash = '';
			for ( let j = 0, l = attributeNames.length; j < l; j ++ ) {
				const name = attributeNames[ j ];
				const attribute = geometry.getAttribute( name );
				const itemSize = attribute.itemSize;
				for ( let k = 0; k < itemSize; k ++ ) {
					// double tilde truncates the decimal value
					hash += `${ ~ ~ ( attribute[ getters[ k ] ]( index ) * hashMultiplier + hashAdditive ) },`;
				}
			}
			// Add another reference to the vertex if it's already
			// used by another index
			if ( hash in hashToIndex ) {
				newIndices.push( hashToIndex[ hash ] );
			} else {
				// copy data to the new index in the temporary attributes
				for ( let j = 0, l = attributeNames.length; j < l; j ++ ) {
					const name = attributeNames[ j ];
					const attribute = geometry.getAttribute( name );
					const morphAttr = geometry.morphAttributes[ name ];
					const itemSize = attribute.itemSize;
					const newarray = tmpAttributes[ name ];
					const newMorphArrays = tmpMorphAttributes[ name ];
					for ( let k = 0; k < itemSize; k ++ ) {
						const getterFunc = getters[ k ];
						const setterFunc = setters[ k ];
						newarray[ setterFunc ]( nextIndex, attribute[ getterFunc ]( index ) );
						if ( morphAttr ) {
							for ( let m = 0, ml = morphAttr.length; m < ml; m ++ ) {
								newMorphArrays[ m ][ setterFunc ]( nextIndex, morphAttr[ m ][ getterFunc ]( index ) );
							}
						}
					}
				}
				hashToIndex[ hash ] = nextIndex;
				newIndices.push( nextIndex );
				nextIndex ++;
			}
		}
		// generate result BufferGeometry
		const result = geometry.clone();
		for ( const name in geometry.attributes ) {
			const tmpAttribute = tmpAttributes[ name ];
			result.setAttribute( name, new BufferAttribute(
				tmpAttribute.array.slice( 0, nextIndex * tmpAttribute.itemSize ),
				tmpAttribute.itemSize,
				tmpAttribute.normalized,
			) );
			if ( ! ( name in tmpMorphAttributes ) ) continue;
			for ( let j = 0; j < tmpMorphAttributes[ name ].length; j ++ ) {
				const tmpMorphAttribute = tmpMorphAttributes[ name ][ j ];
				result.morphAttributes[ name ][ j ] = new BufferAttribute(
					tmpMorphAttribute.array.slice( 0, nextIndex * tmpMorphAttribute.itemSize ),
					tmpMorphAttribute.itemSize,
					tmpMorphAttribute.normalized,
				);
			}
		}
		// indices
		result.setIndex( newIndices );
		return result;
	}
	/**
	 * @param {BufferGeometry} geometry
	 * @param {number} drawMode
	 * @return {BufferGeometry}
	 */
	function toTrianglesDrawMode( geometry, drawMode ) {
		if ( drawMode === TrianglesDrawMode ) {
			console.warn( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.' );
			return geometry;
		}
		if ( drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode ) {
			let index = geometry.getIndex();
			// generate index if not present
			if ( index === null ) {
				const indices = [];
				const position = geometry.getAttribute( 'position' );
				if ( position !== undefined ) {
					for ( let i = 0; i < position.count; i ++ ) {
						indices.push( i );
					}
					geometry.setIndex( indices );
					index = geometry.getIndex();
				} else {
					console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
					return geometry;
				}
			}
			//
			const numberOfTriangles = index.count - 2;
			const newIndices = [];
			if ( drawMode === TriangleFanDrawMode ) {
				// gl.TRIANGLE_FAN
				for ( let i = 1; i <= numberOfTriangles; i ++ ) {
					newIndices.push( index.getX( 0 ) );
					newIndices.push( index.getX( i ) );
					newIndices.push( index.getX( i + 1 ) );
				}
			} else {
				// gl.TRIANGLE_STRIP
				for ( let i = 0; i < numberOfTriangles; i ++ ) {
					if ( i % 2 === 0 ) {
						newIndices.push( index.getX( i ) );
						newIndices.push( index.getX( i + 1 ) );
						newIndices.push( index.getX( i + 2 ) );
					} else {
						newIndices.push( index.getX( i + 2 ) );
						newIndices.push( index.getX( i + 1 ) );
						newIndices.push( index.getX( i ) );
					}
				}
			}
			if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {
				console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );
			}
			// build final geometry
			const newGeometry = geometry.clone();
			newGeometry.setIndex( newIndices );
			newGeometry.clearGroups();
			return newGeometry;
		} else {
			console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:', drawMode );
			return geometry;
		}
	}
	/**
	 * Calculates the morphed attributes of a morphed/skinned BufferGeometry.
	 * Helpful for Raytracing or Decals.
	 * @param {Mesh | Line | Points} object An instance of Mesh, Line or Points.
	 * @return {Object} An Object with original position/normal attributes and morphed ones.
	 */
	function computeMorphedAttributes( object ) {
		const _vA = new Vector3();
		const _vB = new Vector3();
		const _vC = new Vector3();
		const _tempA = new Vector3();
		const _tempB = new Vector3();
		const _tempC = new Vector3();
		const _morphA = new Vector3();
		const _morphB = new Vector3();
		const _morphC = new Vector3();
		function _calculateMorphedAttributeData(
			object,
			attribute,
			morphAttribute,
			morphTargetsRelative,
			a,
			b,
			c,
			modifiedAttributeArray
		) {
			_vA.fromBufferAttribute( attribute, a );
			_vB.fromBufferAttribute( attribute, b );
			_vC.fromBufferAttribute( attribute, c );
			const morphInfluences = object.morphTargetInfluences;
			if ( morphAttribute && morphInfluences ) {
				_morphA.set( 0, 0, 0 );
				_morphB.set( 0, 0, 0 );
				_morphC.set( 0, 0, 0 );
				for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {
					const influence = morphInfluences[ i ];
					const morph = morphAttribute[ i ];
					if ( influence === 0 ) continue;
					_tempA.fromBufferAttribute( morph, a );
					_tempB.fromBufferAttribute( morph, b );
					_tempC.fromBufferAttribute( morph, c );
					if ( morphTargetsRelative ) {
						_morphA.addScaledVector( _tempA, influence );
						_morphB.addScaledVector( _tempB, influence );
						_morphC.addScaledVector( _tempC, influence );
					} else {
						_morphA.addScaledVector( _tempA.sub( _vA ), influence );
						_morphB.addScaledVector( _tempB.sub( _vB ), influence );
						_morphC.addScaledVector( _tempC.sub( _vC ), influence );
					}
				}
				_vA.add( _morphA );
				_vB.add( _morphB );
				_vC.add( _morphC );
			}
			if ( object.isSkinnedMesh ) {
				object.applyBoneTransform( a, _vA );
				object.applyBoneTransform( b, _vB );
				object.applyBoneTransform( c, _vC );
			}
			modifiedAttributeArray[ a * 3 + 0 ] = _vA.x;
			modifiedAttributeArray[ a * 3 + 1 ] = _vA.y;
			modifiedAttributeArray[ a * 3 + 2 ] = _vA.z;
			modifiedAttributeArray[ b * 3 + 0 ] = _vB.x;
			modifiedAttributeArray[ b * 3 + 1 ] = _vB.y;
			modifiedAttributeArray[ b * 3 + 2 ] = _vB.z;
			modifiedAttributeArray[ c * 3 + 0 ] = _vC.x;
			modifiedAttributeArray[ c * 3 + 1 ] = _vC.y;
			modifiedAttributeArray[ c * 3 + 2 ] = _vC.z;
		}
		const geometry = object.geometry;
		const material = object.material;
		let a, b, c;
		const index = geometry.index;
		const positionAttribute = geometry.attributes.position;
		const morphPosition = geometry.morphAttributes.position;
		const morphTargetsRelative = geometry.morphTargetsRelative;
		const normalAttribute = geometry.attributes.normal;
		const morphNormal = geometry.morphAttributes.position;
		const groups = geometry.groups;
		const drawRange = geometry.drawRange;
		let i, j, il, jl;
		let group;
		let start, end;
		const modifiedPosition = new Float32Array( positionAttribute.count * positionAttribute.itemSize );
		const modifiedNormal = new Float32Array( normalAttribute.count * normalAttribute.itemSize );
		if ( index !== null ) {
			// indexed buffer geometry
			if ( Array.isArray( material ) ) {
				for ( i = 0, il = groups.length; i < il; i ++ ) {
					group = groups[ i ];
					start = Math.max( group.start, drawRange.start );
					end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
					for ( j = start, jl = end; j < jl; j += 3 ) {
						a = index.getX( j );
						b = index.getX( j + 1 );
						c = index.getX( j + 2 );
						_calculateMorphedAttributeData(
							object,
							positionAttribute,
							morphPosition,
							morphTargetsRelative,
							a, b, c,
							modifiedPosition
						);
						_calculateMorphedAttributeData(
							object,
							normalAttribute,
							morphNormal,
							morphTargetsRelative,
							a, b, c,
							modifiedNormal
						);
					}
				}
			} else {
				start = Math.max( 0, drawRange.start );
				end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
				for ( i = start, il = end; i < il; i += 3 ) {
					a = index.getX( i );
					b = index.getX( i + 1 );
					c = index.getX( i + 2 );
					_calculateMorphedAttributeData(
						object,
						positionAttribute,
						morphPosition,
						morphTargetsRelative,
						a, b, c,
						modifiedPosition
					);
					_calculateMorphedAttributeData(
						object,
						normalAttribute,
						morphNormal,
						morphTargetsRelative,
						a, b, c,
						modifiedNormal
					);
				}
			}
		} else {
			// non-indexed buffer geometry
			if ( Array.isArray( material ) ) {
				for ( i = 0, il = groups.length; i < il; i ++ ) {
					group = groups[ i ];
					start = Math.max( group.start, drawRange.start );
					end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
					for ( j = start, jl = end; j < jl; j += 3 ) {
						a = j;
						b = j + 1;
						c = j + 2;
						_calculateMorphedAttributeData(
							object,
							positionAttribute,
							morphPosition,
							morphTargetsRelative,
							a, b, c,
							modifiedPosition
						);
						_calculateMorphedAttributeData(
							object,
							normalAttribute,
							morphNormal,
							morphTargetsRelative,
							a, b, c,
							modifiedNormal
						);
					}
				}
			} else {
				start = Math.max( 0, drawRange.start );
				end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) );
				for ( i = start, il = end; i < il; i += 3 ) {
					a = i;
					b = i + 1;
					c = i + 2;
					_calculateMorphedAttributeData(
						object,
						positionAttribute,
						morphPosition,
						morphTargetsRelative,
						a, b, c,
						modifiedPosition
					);
					_calculateMorphedAttributeData(
						object,
						normalAttribute,
						morphNormal,
						morphTargetsRelative,
						a, b, c,
						modifiedNormal
					);
				}
			}
		}
		const morphedPositionAttribute = new Float32BufferAttribute( modifiedPosition, 3 );
		const morphedNormalAttribute = new Float32BufferAttribute( modifiedNormal, 3 );
		return {
			positionAttribute: positionAttribute,
			normalAttribute: normalAttribute,
			morphedPositionAttribute: morphedPositionAttribute,
			morphedNormalAttribute: morphedNormalAttribute
		};
	}
	function mergeGroups( geometry ) {
		if ( geometry.groups.length === 0 ) {
			console.warn( 'THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge.' );
			return geometry;
		}
		let groups = geometry.groups;
		// sort groups by material index
		groups = groups.sort( ( a, b ) => {
			if ( a.materialIndex !== b.materialIndex ) return a.materialIndex - b.materialIndex;
			return a.start - b.start;
		} );
		// create index for non-indexed geometries
		if ( geometry.getIndex() === null ) {
			const positionAttribute = geometry.getAttribute( 'position' );
			const indices = [];
			for ( let i = 0; i < positionAttribute.count; i += 3 ) {
				indices.push( i, i + 1, i + 2 );
			}
			geometry.setIndex( indices );
		}
		// sort index
		const index = geometry.getIndex();
		const newIndices = [];
		for ( let i = 0; i < groups.length; i ++ ) {
			const group = groups[ i ];
			const groupStart = group.start;
			const groupLength = groupStart + group.count;
			for ( let j = groupStart; j < groupLength; j ++ ) {
				newIndices.push( index.getX( j ) );
			}
		}
		geometry.dispose(); // Required to force buffer recreation
		geometry.setIndex( newIndices );
		// update groups indices
		let start = 0;
		for ( let i = 0; i < groups.length; i ++ ) {
			const group = groups[ i ];
			group.start = start;
			start += group.count;
		}
		// merge groups
		let currentGroup = groups[ 0 ];
		geometry.groups = [ currentGroup ];
		for ( let i = 1; i < groups.length; i ++ ) {
			const group = groups[ i ];
			if ( currentGroup.materialIndex === group.materialIndex ) {
				currentGroup.count += group.count;
			} else {
				currentGroup = group;
				geometry.groups.push( currentGroup );
			}
		}
		return geometry;
	}
	/**
	 * Modifies the supplied geometry if it is non-indexed, otherwise creates a new,
	 * non-indexed geometry. Returns the geometry with smooth normals everywhere except
	 * faces that meet at an angle greater than the crease angle.
	 *
	 * @param {BufferGeometry} geometry
	 * @param {number} [creaseAngle]
	 * @return {BufferGeometry}
	 */
	function toCreasedNormals( geometry, creaseAngle = Math.PI / 3 /* 60 degrees */ ) {
		const creaseDot = Math.cos( creaseAngle );
		const hashMultiplier = ( 1 + 1e-10 ) * 1e2;
		// reusable vectors
		const verts = [ new Vector3(), new Vector3(), new Vector3() ];
		const tempVec1 = new Vector3();
		const tempVec2 = new Vector3();
		const tempNorm = new Vector3();
		const tempNorm2 = new Vector3();
		// hashes a vector
		function hashVertex( v ) {
			const x = ~ ~ ( v.x * hashMultiplier );
			const y = ~ ~ ( v.y * hashMultiplier );
			const z = ~ ~ ( v.z * hashMultiplier );
			return `${x},${y},${z}`;
		}
		// BufferGeometry.toNonIndexed() warns if the geometry is non-indexed
		// and returns the original geometry
		const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry;
		const posAttr = resultGeometry.attributes.position;
		const vertexMap = {};
		// find all the normals shared by commonly located vertices
		for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) {
			const i3 = 3 * i;
			const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 );
			const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 );
			const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 );
			tempVec1.subVectors( c, b );
			tempVec2.subVectors( a, b );
			// add the normal to the map for all vertices
			const normal = new Vector3().crossVectors( tempVec1, tempVec2 ).normalize();
			for ( let n = 0; n < 3; n ++ ) {
				const vert = verts[ n ];
				const hash = hashVertex( vert );
				if ( ! ( hash in vertexMap ) ) {
					vertexMap[ hash ] = [];
				}
				vertexMap[ hash ].push( normal );
			}
		}
		// average normals from all vertices that share a common location if they are within the
		// provided crease threshold
		const normalArray = new Float32Array( posAttr.count * 3 );
		const normAttr = new BufferAttribute( normalArray, 3, false );
		for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) {
			// get the face normal for this vertex
			const i3 = 3 * i;
			const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 );
			const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 );
			const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 );
			tempVec1.subVectors( c, b );
			tempVec2.subVectors( a, b );
			tempNorm.crossVectors( tempVec1, tempVec2 ).normalize();
			// average all normals that meet the threshold and set the normal value
			for ( let n = 0; n < 3; n ++ ) {
				const vert = verts[ n ];
				const hash = hashVertex( vert );
				const otherNormals = vertexMap[ hash ];
				tempNorm2.set( 0, 0, 0 );
				for ( let k = 0, lk = otherNormals.length; k < lk; k ++ ) {
					const otherNorm = otherNormals[ k ];
					if ( tempNorm.dot( otherNorm ) > creaseDot ) {
						tempNorm2.add( otherNorm );
					}
				}
				tempNorm2.normalize();
				normAttr.setXYZ( i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z );
			}
		}
		resultGeometry.setAttribute( 'normal', normAttr );
		return resultGeometry;
	}
	/*
	export {
		computeMikkTSpaceTangents,
		mergeGeometries,
		mergeAttributes,
		interleaveAttributes,
		estimateBytesUsed,
		mergeVertices,
		toTrianglesDrawMode,
		computeMorphedAttributes,
		mergeGroups,
		toCreasedNormals
	};*/
	//import { mergeGeometries } from './BufferGeometryUtils.js';
	class LDrawUtils {
		static mergeObject( object ) {
			// Merges geometries in object by materials and returns new object. Use on not indexed geometries.
			// The object buffers reference the old object ones.
			// Special treatment is done to the conditional lines generated by LDrawLoader.
			function extractGroup( geometry, group, elementSize, isConditionalLine ) {
				// Extracts a group from a geometry as a new geometry (with attribute buffers referencing original buffers)
				const newGeometry = new BufferGeometry();
				const originalPositions = geometry.getAttribute( 'position' ).array;
				const originalNormals = elementSize === 3 ? geometry.getAttribute( 'normal' ).array : null;
				const numVertsGroup = Math.min( group.count, Math.floor( originalPositions.length / 3 ) - group.start );
				const vertStart = group.start * 3;
				const vertEnd = ( group.start + numVertsGroup ) * 3;
				const positions = originalPositions.subarray( vertStart, vertEnd );
				const normals = originalNormals !== null ? originalNormals.subarray( vertStart, vertEnd ) : null;
				newGeometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
				if ( normals !== null ) newGeometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
				if ( isConditionalLine ) {
					const controlArray0 = geometry.getAttribute( 'control0' ).array.subarray( vertStart, vertEnd );
					const controlArray1 = geometry.getAttribute( 'control1' ).array.subarray( vertStart, vertEnd );
					const directionArray = geometry.getAttribute( 'direction' ).array.subarray( vertStart, vertEnd );
					newGeometry.setAttribute( 'control0', new BufferAttribute( controlArray0, 3, false ) );
					newGeometry.setAttribute( 'control1', new BufferAttribute( controlArray1, 3, false ) );
					newGeometry.setAttribute( 'direction', new BufferAttribute( directionArray, 3, false ) );
				}
				return newGeometry;
			}
			function addGeometry( mat, geometry, geometries ) {
				const geoms = geometries[ mat.uuid ];
				if ( ! geoms ) {
					geometries[ mat.uuid ] = {
						mat: mat,
						arr: [ geometry ]
					};
				} else {
					geoms.arr.push( geometry );
				}
			}
			function permuteAttribute( attribute, elemSize ) {
				// Permutes first two vertices of each attribute element
				if ( ! attribute ) return;
				const verts = attribute.array;
				const numVerts = Math.floor( verts.length / 3 );
				let offset = 0;
				for ( let i = 0; i < numVerts; i ++ ) {
					const x = verts[ offset ];
					const y = verts[ offset + 1 ];
					const z = verts[ offset + 2 ];
					verts[ offset ] = verts[ offset + 3 ];
					verts[ offset + 1 ] = verts[ offset + 4 ];
					verts[ offset + 2 ] = verts[ offset + 5 ];
					verts[ offset + 3 ] = x;
					verts[ offset + 4 ] = y;
					verts[ offset + 5 ] = z;
					offset += elemSize * 3;
				}
			}
			// Traverse the object hierarchy collecting geometries and transforming them to world space
			const meshGeometries = {};
			const linesGeometries = {};
			const condLinesGeometries = {};
			object.updateMatrixWorld( true );
			const normalMatrix = new Matrix3();
			object.traverse( c => {
				if ( c.isMesh | c.isLineSegments ) {
					const elemSize = c.isMesh ? 3 : 2;
					const geometry = c.geometry.clone();
					const matrixIsInverted = c.matrixWorld.determinant() < 0;
					if ( matrixIsInverted ) {
						permuteAttribute( geometry.attributes.position, elemSize );
						permuteAttribute( geometry.attributes.normal, elemSize );
					}
					geometry.applyMatrix4( c.matrixWorld );
					if ( c.isConditionalLine ) {
						geometry.attributes.control0.applyMatrix4( c.matrixWorld );
						geometry.attributes.control1.applyMatrix4( c.matrixWorld );
						normalMatrix.getNormalMatrix( c.matrixWorld );
						geometry.attributes.direction.applyNormalMatrix( normalMatrix );
					}
					const geometries = c.isMesh ? meshGeometries : ( c.isConditionalLine ? condLinesGeometries : linesGeometries );
					if ( Array.isArray( c.material ) ) {
						for ( const groupIndex in geometry.groups ) {
							const group = geometry.groups[ groupIndex ];
							const mat = c.material[ group.materialIndex ];
							const newGeometry = extractGroup( geometry, group, elemSize, c.isConditionalLine );
							addGeometry( mat, newGeometry, geometries );
						}
					} else {
						addGeometry( c.material, geometry, geometries );
					}
				}
			} );
			// Create object with merged geometries
			const mergedObject = new Group();
			const meshMaterialsIds = Object.keys( meshGeometries );
			for ( const meshMaterialsId of meshMaterialsIds ) {
				const meshGeometry = meshGeometries[ meshMaterialsId ];
				const mergedGeometry = mergeGeometries( meshGeometry.arr );
				mergedObject.add( new Mesh( mergedGeometry, meshGeometry.mat ) );
			}
			const linesMaterialsIds = Object.keys( linesGeometries );
			for ( const linesMaterialsId of linesMaterialsIds ) {
				const lineGeometry = linesGeometries[ linesMaterialsId ];
				const mergedGeometry = mergeGeometries( lineGeometry.arr );
				mergedObject.add( new LineSegments( mergedGeometry, lineGeometry.mat ) );
			}
			const condLinesMaterialsIds = Object.keys( condLinesGeometries );
			for ( const condLinesMaterialsId of condLinesMaterialsIds ) {
				const condLineGeometry = condLinesGeometries[ condLinesMaterialsId ];
				const mergedGeometry = mergeGeometries( condLineGeometry.arr );
				const condLines = new LineSegments( mergedGeometry, condLineGeometry.mat );
				condLines.isConditionalLine = true;
				mergedObject.add( condLines );
			}
			mergedObject.userData.constructionStep = 0;
			mergedObject.userData.numConstructionSteps = 1;
			return mergedObject;
		}
	}
	//export { LDrawUtils };
	const clock = new Clock();
	class Loop {
	  constructor(camera, scene, renderer) {
		this.camera = camera;
		this.scene = scene;
		this.renderer = renderer;
		// somewhere in the Loop class:
		this.updatables = []
	  }
	  start() {
		this.renderer.setAnimationLoop(() => {
			// tell every animated object to tick forward one frame
			// this.tick();
			// render a frame
			this.renderer.render(this.scene, this.camera);
		});
	  }
	  stop() {
		this.renderer.setAnimationLoop(null);
	  }
	  tick(){
		// only call the getDelta function once per frame!
		const delta = clock.getDelta();
		// console.log(
		//   `The last frame rendered in ${delta * 1000} milliseconds`,
		// );
		// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
		if(this.updatables.length){
			for (const object of this.updatables) {
				if(typeof object.tick == 'function'){
					object.tick(delta);
				}
			}
		}
	  }
	}
	//export { Loop };
   initViewer = ()=>{
		container = document.querySelector('#scene-container');
		let ldraw = new Ldraw();
		ldraw.start();
	}执行代码
现在我们已经成功添加了很多功能和复杂的交互逻辑,将不同的细节进行分层管理。后续可采用 MVC 模式重构代码,将代码分为三个层级:模型层、视图层和控制层。模型层负责数据的管理,视图层负责展示数据和渲染 UI,控制层则负责协调模型层和视图层之间的交互,同时处理一些业务逻辑。重构后代码层级会更清晰,方便拓展其功能。
最后,将脚本执行到dom即可看到模型。
<!DOCTYPE html>
<html lang="zh-CN">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta name="theme-color" content="#000000" />
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="renderer" content="webkit">
  <meta name="force-rendering" content="webkit">
  <meta name="google-site-verification" content="FTeR0c8arOPKh8c5DYh_9uu98_zJbaWw53J-Sch9MTg">
  <meta data-rh="true" name="keywords" content="three.js实现乐高小轿车">
  <meta data-rh="true" name="description" content="three.js实现乐高小轿车">
  <meta data-rh="true" property="og:title" content="three.js实现乐高小轿车">
  <link rel="icon" href="./favicon.ico">
  <title>three.js实现乐高小轿车</title>
  
  <style>
    body {
		padding: 0;
		margin: 0;
		font: normal 14px/1.42857 Tahoma;
    }
    #scene-container {
	    height: 100vh;
	}
  </style>
</head>
<body onload="initViewer()">
  <div id="scene-container"></div>
  
  <script>
    let initViewer = null
  </script>
</body>
</html>模型描述文本
0 LDraw.org Configuration File
0 Name: LDConfig.ldr
0 Author: LDraw.org
0 !LDRAW_ORG Configuration UPDATE 2017-12-150 // LDraw Solid Colours
0 // LEGOID 26 - Black
0 !COLOUR Black CODE 0 VALUE #05131D EDGE #595959
0 // LEGOID 23 - Bright Blue
0 !COLOUR Blue CODE 1 VALUE #0055BF EDGE #333333
0 // LEGOID 28 - Dark Green
0 !COLOUR Green CODE 2 VALUE #257A3E EDGE #333333
0 // LEGOID 107 - Bright Bluish Green
0 !COLOUR Dark_Turquoise CODE 3 VALUE #00838F EDGE #333333
0 // LEGOID 21 - Bright Red
0 !COLOUR Red CODE 4 VALUE #C91A09 EDGE #333333
0 // LEGOID 221 - Bright Purple
0 !COLOUR Dark_Pink CODE 5 VALUE #C870A0 EDGE #333333
0 // LEGOID 217 - Brown
0 !COLOUR Brown CODE 6 VALUE #583927 EDGE #1E1E1E
0 // LEGOID 2 - Grey
0 !COLOUR Light_Grey CODE 7 VALUE #9BA19D EDGE #333333
0 // LEGOID 27 - Dark Grey
0 !COLOUR Dark_Grey CODE 8 VALUE #6D6E5C EDGE #333333
0 // LEGOID 45 - Light Blue
0 !COLOUR Light_Blue CODE 9 VALUE #B4D2E3 EDGE #333333
0 // LEGOID 37 - Bright Green
0 !COLOUR Bright_Green CODE 10 VALUE #4B9F4A EDGE #333333
0 // LEGOID 116 - Medium Bluish Green
0 !COLOUR Light_Turquoise CODE 11 VALUE #55A5AF EDGE #333333
0 // LEGOID 4 - Brick Red
0 !COLOUR Salmon CODE 12 VALUE #F2705E EDGE #333333
0 // LEGOID 9 - Light Reddish Violet
0 !COLOUR Pink CODE 13 VALUE #FC97AC EDGE #333333
0 // LEGOID 24 - Bright Yellow
0 !COLOUR Yellow CODE 14 VALUE #F2CD37 EDGE #333333
还原模型到三维场景

参见:
3. 开发和学习环境,引入threejs | Three.js中文网
LDraw.org - LDraw.org Homepage








![【算法每日一练]-数论(保姆级教程 篇1 埃氏筛,欧拉筛)](https://img-blog.csdnimg.cn/direct/8a9af66bfbe84cfeadaf29083185b7c9.png)










